ამოხსნა x-ისთვის
x = \frac{\sqrt{38553} - 19}{2} \approx 88.67458938
x=\frac{-\sqrt{38553}-19}{2}\approx -107.67458938
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{2}+19x+100=9648
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x^{2}+19x+100-9648=9648-9648
გამოაკელით 9648 განტოლების ორივე მხარეს.
x^{2}+19x+100-9648=0
9648-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+19x-9548=0
გამოაკელით 9648 100-ს.
x=\frac{-19±\sqrt{19^{2}-4\left(-9548\right)}}{2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1-ით a, 19-ით b და -9548-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-19±\sqrt{361-4\left(-9548\right)}}{2}
აიყვანეთ კვადრატში 19.
x=\frac{-19±\sqrt{361+38192}}{2}
გაამრავლეთ -4-ზე -9548.
x=\frac{-19±\sqrt{38553}}{2}
მიუმატეთ 361 38192-ს.
x=\frac{\sqrt{38553}-19}{2}
ახლა ამოხსენით განტოლება x=\frac{-19±\sqrt{38553}}{2} როცა ± პლიუსია. მიუმატეთ -19 \sqrt{38553}-ს.
x=\frac{-\sqrt{38553}-19}{2}
ახლა ამოხსენით განტოლება x=\frac{-19±\sqrt{38553}}{2} როცა ± მინუსია. გამოაკელით \sqrt{38553} -19-ს.
x=\frac{\sqrt{38553}-19}{2} x=\frac{-\sqrt{38553}-19}{2}
განტოლება ახლა ამოხსნილია.
x^{2}+19x+100=9648
ამის მსგავსი კვადრატული განტოლებების ამოხსნა შესაძლებელია კვადრატის გამოთვლით. კვადრატის გამოსათვლელად, განტოლებამ ჯერ უნდა მიიღოს შემდეგი ფორმა: x^{2}+bx=c.
x^{2}+19x+100-100=9648-100
გამოაკელით 100 განტოლების ორივე მხარეს.
x^{2}+19x=9648-100
100-იდან იმავე რიცხვის გამოკლების შედეგია 0.
x^{2}+19x=9548
გამოაკელით 100 9648-ს.
x^{2}+19x+\left(\frac{19}{2}\right)^{2}=9548+\left(\frac{19}{2}\right)^{2}
გაყავით 19, x წევრის კოეფიციენტი, 2-ზე, \frac{19}{2}-ის მისაღებად. შემდეგ დაამატეთ \frac{19}{2}-ის კვადრატი განტოლების ორივე მხარეს. ამის შედეგად განტოლების მარცხენა მხარე სრული კვადრატი გახდება.
x^{2}+19x+\frac{361}{4}=9548+\frac{361}{4}
აიყვანეთ კვადრატში \frac{19}{2} მამრავლის მრიცხველის და მნიშვნელის კვადრატში აყვანის გზით.
x^{2}+19x+\frac{361}{4}=\frac{38553}{4}
მიუმატეთ 9548 \frac{361}{4}-ს.
\left(x+\frac{19}{2}\right)^{2}=\frac{38553}{4}
დაშალეთ მამრავლებად x^{2}+19x+\frac{361}{4}. ზოგადად, როცა x^{2}+bx+c სრული კვადრატია, ყოველთვის შესაძლებელია მისი დაშლა, როგორც \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{19}{2}\right)^{2}}=\sqrt{\frac{38553}{4}}
აიღეთ განტოლების ორივე მხარის კვადრატული ფესვი.
x+\frac{19}{2}=\frac{\sqrt{38553}}{2} x+\frac{19}{2}=-\frac{\sqrt{38553}}{2}
გაამარტივეთ.
x=\frac{\sqrt{38553}-19}{2} x=\frac{-\sqrt{38553}-19}{2}
გამოაკელით \frac{19}{2} განტოლების ორივე მხარეს.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}