ამოხსნა x-ისთვის (complex solution)
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\approx 1.169629851+0.931683417i
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\approx -1.169629851-0.931683417i
x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\approx 1.169629851-0.931683417i
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\approx -1.169629851+0.931683417i
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
x^{2}x^{2}+5=x^{2}
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი, ვინაიდან ნულზე გაყოფა არ არის განსაზღვრული. განტოლების ორივე მხარე გაამრავლეთ x^{2}-ზე.
x^{4}+5=x^{2}
იმავე ფუძის ჯერადი რიცხვების გასამრავლებლად, შეკრიბეთ მათი ექსპონენტები. შეკრიბეთ 2 და 2 რომ მიიღოთ 4.
x^{4}+5-x^{2}=0
გამოაკელით x^{2} ორივე მხარეს.
t^{2}-t+5=0
ჩაანაცვლეთ t-ით x^{2}.
t=\frac{-\left(-1\right)±\sqrt{\left(-1\right)^{2}-4\times 1\times 5}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, -1 b-თვის და 5 c-თვის კვადრატულ ფორმულაში.
t=\frac{1±\sqrt{-19}}{2}
შეასრულეთ გამოთვლები.
t=\frac{1+\sqrt{19}i}{2} t=\frac{-\sqrt{19}i+1}{2}
ამოხსენით განტოლება t=\frac{1±\sqrt{-19}}{2}, როცა ± არის პლუსი და როცა ± არის მინუსი.
x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}} x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}} x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}
რადგან x=t^{2}, ამონახსნები მიიღება x=±\sqrt{t}-ის შეფასებით ყოველი t-თვის.
x=\sqrt[4]{5}e^{\frac{-\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{-\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i}{2}}\text{, }x\neq 0 x=\sqrt[4]{5}e^{\frac{\arctan(\sqrt{19})i+2\pi i}{2}}\text{, }x\neq 0
ცვლადი x არ შეიძლება იყოს 0-ის ტოლი.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}