მთავარ კონტენტზე გადასვლა
ამოხსნა x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x^{3}-3x^{2}+3x-1=0
\left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} ბინომიალური თეორემის გამოყენება \left(x-1\right)^{3}-ის გასაშლელად.
±1
რაციონალური ფესვების შესახებ თეორემის მიხედვით, მრავალწევრის ყველა რაციონალური ფესვი არის ფორმაში \frac{p}{q}, სადაც p ყოფს თავისუფალ წევრს-1 და q ყოფს უფროს კოეფიციენტს 1. ჩამოთვალეთ ყველა შესაძლო ამონახსნი \frac{p}{q}.
x=1
იპოვნეთ ერთი ასეთი ფესვი ყველა მთელი რიცხვის მნიშვნელობის გადარჩევით, დაწყებული პატარადან, აბსოლუტური მნიშვნელობის მიხედვით. თუ მთელი რიცხვითი ფესვები ნაპოვნი არ არის, სცადეთ წილადები.
x^{2}-2x+1=0
ბეზუს თეორემის მიხედვით, x-k არის მრავალწევრის მამრავლი თითოეული ფესვისთვის k. გაყავით x^{3}-3x^{2}+3x-1 x-1-ზე x^{2}-2x+1-ის მისაღებად. ამოხსენით განტოლება, სადაც შედეგი უდრის 0.
x=\frac{-\left(-2\right)±\sqrt{\left(-2\right)^{2}-4\times 1\times 1}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლების ამოხსნა შესაძლებელია კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ჩაანაცვლეთ 1 a-თვის, -2 b-თვის და 1 c-თვის კვადრატულ ფორმულაში.
x=\frac{2±0}{2}
შეასრულეთ გამოთვლები.
x=1
ამონახსბები იგივეა.