შეფასება
\sqrt[3]{3}\approx 1.44224957
გაზიარება
კოპირებულია ბუფერში
\sqrt[9]{3^{3}}
ხელახლა დაწერეთ 27, როგორც 3^{3}.
\left(3^{3}\right)^{\frac{1}{9}}
გარდაქმნა რადიკალურიდან ექსპონენციალურ ფორმაში.
3^{\frac{3}{9}}
რიცხვის ხარისხის სხვა ხარისხში ასაყვანად, გადაამრავლეთ ექსპონენტები.
3^{\frac{1}{3}}
შეამცირეთ წილადი \frac{3}{9} უმცირეს წევრებამდე გამოკლებით და 3-ის შეკვეცით.
\sqrt[3]{3}
გარდაქმნა ექსპონენციალურდან რადიკალურ ფორმაში.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}