ამოხსნა x-ისთვის
x=\frac{\sqrt{5513}y+67y+5\sqrt{5513}+431}{32}
ამოხსნა y-ისთვის
y=\frac{\sqrt{5513}x-67x+41-3\sqrt{5513}}{32}
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \sqrt{37} 10x+7y+5-ზე.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \sqrt{149} 6x-y-23-ზე.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}
გამოაკელით 6\sqrt{149}x ორივე მხარეს.
10\sqrt{37}x+5\sqrt{37}-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y
გამოაკელით 7\sqrt{37}y ორივე მხარეს.
10\sqrt{37}x-6\sqrt{149}x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
გამოაკელით 5\sqrt{37} ორივე მხარეს.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37}
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: x.
\left(10\sqrt{37}-6\sqrt{149}\right)x=-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}
განტოლება სტანდარტული ფორმისაა.
\frac{\left(10\sqrt{37}-6\sqrt{149}\right)x}{10\sqrt{37}-6\sqrt{149}}=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
ორივე მხარე გაყავით 10\sqrt{37}-6\sqrt{149}-ზე.
x=\frac{-7\sqrt{37}y-\sqrt{149}y-5\sqrt{37}-23\sqrt{149}}{10\sqrt{37}-6\sqrt{149}}
10\sqrt{37}-6\sqrt{149}-ზე გაყოფა აუქმებს 10\sqrt{37}-6\sqrt{149}-ზე გამრავლებას.
x=\frac{\frac{3\sqrt{149}+5\sqrt{37}}{416}\left(7\sqrt{37}y+\sqrt{149}y+5\sqrt{37}+23\sqrt{149}\right)}{2}
გაყავით -\sqrt{149}y-23\sqrt{149}-7\sqrt{37}y-5\sqrt{37} 10\sqrt{37}-6\sqrt{149}-ზე.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=\sqrt{149}\left(6x-y-23\right)
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \sqrt{37} 10x+7y+5-ზე.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}=6\sqrt{149}x-\sqrt{149}y-23\sqrt{149}
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ \sqrt{149} 6x-y-23-ზე.
10\sqrt{37}x+7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}
დაამატეთ \sqrt{149}y ორივე მხარეს.
7\sqrt{37}y+5\sqrt{37}+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x
გამოაკელით 10\sqrt{37}x ორივე მხარეს.
7\sqrt{37}y+\sqrt{149}y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
გამოაკელით 5\sqrt{37} ორივე მხარეს.
\left(7\sqrt{37}+\sqrt{149}\right)y=6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37}
დააჯგუფეთ ყველა წევრი, რომელიც შეიცავს შემდეგს: y.
\left(\sqrt{149}+7\sqrt{37}\right)y=6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}
განტოლება სტანდარტული ფორმისაა.
\frac{\left(\sqrt{149}+7\sqrt{37}\right)y}{\sqrt{149}+7\sqrt{37}}=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
ორივე მხარე გაყავით 7\sqrt{37}+\sqrt{149}-ზე.
y=\frac{6\sqrt{149}x-10\sqrt{37}x-5\sqrt{37}-23\sqrt{149}}{\sqrt{149}+7\sqrt{37}}
7\sqrt{37}+\sqrt{149}-ზე გაყოფა აუქმებს 7\sqrt{37}+\sqrt{149}-ზე გამრავლებას.
y=\frac{\sqrt{5513}x-67x+41-3\sqrt{5513}}{32}
გაყავით 6\sqrt{149}x-23\sqrt{149}-10\sqrt{37}x-5\sqrt{37} 7\sqrt{37}+\sqrt{149}-ზე.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}