ამოხსნა x-ისთვის
\left\{\begin{matrix}x=-i\ln(\frac{-2i\cos(y)-\sqrt{2}\sqrt{16\cos(y)-\cos(2y)-31}+8i}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{-2i\cos(y)-\sqrt{2}\sqrt{16\cos(y)-\cos(2y)-31}+8i}{2}\neq 0\\x=-i\ln(\frac{-2i\cos(y)+\sqrt{2}\sqrt{16\cos(y)-\cos(2y)-31}+8i}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{-2i\cos(y)+\sqrt{2}\sqrt{16\cos(y)-\cos(2y)-31}+8i}{2}\neq 0\end{matrix}\right.
ამოხსნა y-ისთვის
\left\{\begin{matrix}y=-i\ln(\frac{-2\sin(x)-\sqrt{2}\sqrt{-\cos(2x)-16\sin(x)+31}+8}{2})+2\pi n_{1}\text{, }n_{1}\in \mathrm{Z}\text{, }&\frac{-2\sin(x)-\sqrt{2}\sqrt{-\cos(2x)-16\sin(x)+31}+8}{2}\neq 0\\y=-i\ln(\frac{-2\sin(x)+\sqrt{2}\sqrt{-\cos(2x)-16\sin(x)+31}+8}{2})+2\pi n_{2}\text{, }n_{2}\in \mathrm{Z}\text{, }&\frac{-2\sin(x)+\sqrt{2}\sqrt{-\cos(2x)-16\sin(x)+31}+8}{2}\neq 0\end{matrix}\right.
გაზიარება
კოპირებულია ბუფერში
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}