მთავარ კონტენტზე გადასვლა
დიფერენცირება x-ის მიმართ
Tick mark Image
შეფასება
Tick mark Image
დიაგრამა
ვიქტორინა
Trigonometry

გაზიარება

\frac{\mathrm{d}}{\mathrm{d}x}(\sin(x))=\left(\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}\right)
ფუნქციისთვის f\left(x\right), დერივატივი არის \frac{f\left(x+h\right)-f\left(x\right)}{h}-ის ზღვარი, რადგან h გადადის 0-ში, თუ ზღვარი არსებობს.
\lim_{h\to 0}\frac{\sin(x+h)-\sin(x)}{h}
გამოიყენეთ ჯამის ფორმულა სინუსისთვის.
\lim_{h\to 0}\frac{\sin(x)\left(\cos(h)-1\right)+\cos(x)\sin(h)}{h}
ფრჩხილებს გარეთ გაიტანეთ \sin(x).
\left(\lim_{h\to 0}\sin(x)\right)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\left(\lim_{h\to 0}\cos(x)\right)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
გადაწერეთ ზღვარი.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)\left(\lim_{h\to 0}\frac{\sin(h)}{h}\right)
გამოიყენეთ ის ფაქტი, რომ x არის კონსტანტა ზღვრების გამოთვლისას, რადგან h გადადის 0-ში.
\sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x)
ზღვრული \lim_{x\to 0}\frac{\sin(x)}{x} არის 1.
\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)=\left(\lim_{h\to 0}\frac{\left(\cos(h)-1\right)\left(\cos(h)+1\right)}{h\left(\cos(h)+1\right)}\right)
ზღვრული \lim_{h\to 0}\frac{\cos(h)-1}{h}-ის შეფასებისთვის, ჯერ გაამრავლეთ მრიცხველი და მნიშვნელი \cos(h)+1-ზე.
\lim_{h\to 0}\frac{\left(\cos(h)\right)^{2}-1}{h\left(\cos(h)+1\right)}
გაამრავლეთ \cos(h)+1-ზე \cos(h)-1.
\lim_{h\to 0}-\frac{\left(\sin(h)\right)^{2}}{h\left(\cos(h)+1\right)}
გამოიყენეთ პითაგორას იგივეობა.
\left(\lim_{h\to 0}-\frac{\sin(h)}{h}\right)\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
გადაწერეთ ზღვარი.
-\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)
ზღვრული \lim_{x\to 0}\frac{\sin(x)}{x} არის 1.
\left(\lim_{h\to 0}\frac{\sin(h)}{\cos(h)+1}\right)=0
გამოიყენეთ ის ფაქტი, რომ \frac{\sin(h)}{\cos(h)+1} მუდმივია 0-ისას.
\cos(x)
ჩაანაცვლეთ მნიშვნელობა 0 განტოლებაში \sin(x)\left(\lim_{h\to 0}\frac{\cos(h)-1}{h}\right)+\cos(x).