მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+5y=4,x-3y=6
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+5y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-5y+4
გამოაკელით 5y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-5y+4\right)
ორივე მხარე გაყავით 3-ზე.
x=-\frac{5}{3}y+\frac{4}{3}
გაამრავლეთ \frac{1}{3}-ზე -5y+4.
-\frac{5}{3}y+\frac{4}{3}-3y=6
ჩაანაცვლეთ \frac{-5y+4}{3}-ით x მეორე განტოლებაში, x-3y=6.
-\frac{14}{3}y+\frac{4}{3}=6
მიუმატეთ -\frac{5y}{3} -3y-ს.
-\frac{14}{3}y=\frac{14}{3}
გამოაკელით \frac{4}{3} განტოლების ორივე მხარეს.
y=-1
განტოლების ორივე მხარე გაყავით -\frac{14}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{5}{3}\left(-1\right)+\frac{4}{3}
ჩაანაცვლეთ -1-ით y აქ: x=-\frac{5}{3}y+\frac{4}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{5+4}{3}
გაამრავლეთ -\frac{5}{3}-ზე -1.
x=3
მიუმატეთ \frac{4}{3} \frac{5}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=-1
სისტემა ახლა ამოხსნილია.
3x+5y=4,x-3y=6
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\6\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}3&5\\1&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&5\\1&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&5\\1&-3\end{matrix}\right))\left(\begin{matrix}4\\6\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-5}&-\frac{5}{3\left(-3\right)-5}\\-\frac{1}{3\left(-3\right)-5}&\frac{3}{3\left(-3\right)-5}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}&\frac{5}{14}\\\frac{1}{14}&-\frac{3}{14}\end{matrix}\right)\left(\begin{matrix}4\\6\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{14}\times 4+\frac{5}{14}\times 6\\\frac{1}{14}\times 4-\frac{3}{14}\times 6\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=-1
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+5y=4,x-3y=6
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x+5y=4,3x+3\left(-3\right)y=3\times 6
იმისათვის, რომ 3x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
3x+5y=4,3x-9y=18
გაამარტივეთ.
3x-3x+5y+9y=4-18
გამოაკელით 3x-9y=18 3x+5y=4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
5y+9y=4-18
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
14y=4-18
მიუმატეთ 5y 9y-ს.
14y=-14
მიუმატეთ 4 -18-ს.
y=-1
ორივე მხარე გაყავით 14-ზე.
x-3\left(-1\right)=6
ჩაანაცვლეთ -1-ით y აქ: x-3y=6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x+3=6
გაამრავლეთ -3-ზე -1.
x=3
გამოაკელით 3 განტოლების ორივე მხარეს.
x=3,y=-1
სისტემა ახლა ამოხსნილია.