მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-10y=-2
განიხილეთ პირველი განტოლება. გამოაკელით 10y ორივე მხარეს.
x-2y=6,x-10y=-2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-2y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=2y+6
მიუმატეთ 2y განტოლების ორივე მხარეს.
2y+6-10y=-2
ჩაანაცვლეთ 6+2y-ით x მეორე განტოლებაში, x-10y=-2.
-8y+6=-2
მიუმატეთ 2y -10y-ს.
-8y=-8
გამოაკელით 6 განტოლების ორივე მხარეს.
y=1
ორივე მხარე გაყავით -8-ზე.
x=2+6
ჩაანაცვლეთ 1-ით y აქ: x=2y+6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8
მიუმატეთ 6 2-ს.
x=8,y=1
სისტემა ახლა ამოხსნილია.
x-10y=-2
განიხილეთ პირველი განტოლება. გამოაკელით 10y ორივე მხარეს.
x-2y=6,x-10y=-2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-2\\1&-10\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-2\\1&-10\end{matrix}\right))\left(\begin{matrix}6\\-2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{10}{-10-\left(-2\right)}&-\frac{-2}{-10-\left(-2\right)}\\-\frac{1}{-10-\left(-2\right)}&\frac{1}{-10-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}&-\frac{1}{4}\\\frac{1}{8}&-\frac{1}{8}\end{matrix}\right)\left(\begin{matrix}6\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{4}\times 6-\frac{1}{4}\left(-2\right)\\\frac{1}{8}\times 6-\frac{1}{8}\left(-2\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=8,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x-10y=-2
განიხილეთ პირველი განტოლება. გამოაკელით 10y ორივე მხარეს.
x-2y=6,x-10y=-2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x-2y+10y=6+2
გამოაკელით x-10y=-2 x-2y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2y+10y=6+2
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
8y=6+2
მიუმატეთ -2y 10y-ს.
8y=8
მიუმატეთ 6 2-ს.
y=1
ორივე მხარე გაყავით 8-ზე.
x-10=-2
ჩაანაცვლეთ 1-ით y აქ: x-10y=-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8
მიუმატეთ 10 განტოლების ორივე მხარეს.
x=8,y=1
სისტემა ახლა ამოხსნილია.