მთავარ კონტენტზე გადასვლა
ამოხსნა m, n-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

m+n=-3,-3m+2n=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
m+n=-3
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი m-ისთვის, m-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
m=-n-3
გამოაკელით n განტოლების ორივე მხარეს.
-3\left(-n-3\right)+2n=1
ჩაანაცვლეთ -n-3-ით m მეორე განტოლებაში, -3m+2n=1.
3n+9+2n=1
გაამრავლეთ -3-ზე -n-3.
5n+9=1
მიუმატეთ 3n 2n-ს.
5n=-8
გამოაკელით 9 განტოლების ორივე მხარეს.
n=-\frac{8}{5}
ორივე მხარე გაყავით 5-ზე.
m=-\left(-\frac{8}{5}\right)-3
ჩაანაცვლეთ -\frac{8}{5}-ით n აქ: m=-n-3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ m.
m=\frac{8}{5}-3
გაამრავლეთ -1-ზე -\frac{8}{5}.
m=-\frac{7}{5}
მიუმატეთ -3 \frac{8}{5}-ს.
m=-\frac{7}{5},n=-\frac{8}{5}
სისტემა ახლა ამოხსნილია.
m+n=-3,-3m+2n=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-3\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}1&1\\-3&2\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\-3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}m\\n\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&2\end{matrix}\right))\left(\begin{matrix}-3\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2-\left(-3\right)}&-\frac{1}{2-\left(-3\right)}\\-\frac{-3}{2-\left(-3\right)}&\frac{1}{2-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}&-\frac{1}{5}\\\frac{3}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}-3\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}\frac{2}{5}\left(-3\right)-\frac{1}{5}\\\frac{3}{5}\left(-3\right)+\frac{1}{5}\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}m\\n\end{matrix}\right)=\left(\begin{matrix}-\frac{7}{5}\\-\frac{8}{5}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
m=-\frac{7}{5},n=-\frac{8}{5}
ამოიღეთ მატრიცის ელემენტები - m და n.
m+n=-3,-3m+2n=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-3m-3n=-3\left(-3\right),-3m+2n=1
იმისათვის, რომ m და -3m ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
-3m-3n=9,-3m+2n=1
გაამარტივეთ.
-3m+3m-3n-2n=9-1
გამოაკელით -3m+2n=1 -3m-3n=9-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3n-2n=9-1
მიუმატეთ -3m 3m-ს. პირობები -3m და 3m გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-5n=9-1
მიუმატეთ -3n -2n-ს.
-5n=8
მიუმატეთ 9 -1-ს.
n=-\frac{8}{5}
ორივე მხარე გაყავით -5-ზე.
-3m+2\left(-\frac{8}{5}\right)=1
ჩაანაცვლეთ -\frac{8}{5}-ით n აქ: -3m+2n=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ m.
-3m-\frac{16}{5}=1
გაამრავლეთ 2-ზე -\frac{8}{5}.
-3m=\frac{21}{5}
მიუმატეთ \frac{16}{5} განტოლების ორივე მხარეს.
m=-\frac{7}{5}
ორივე მხარე გაყავით -3-ზე.
m=-\frac{7}{5},n=-\frac{8}{5}
სისტემა ახლა ამოხსნილია.