მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+4y=40,-x+8y=68
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+4y=40
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-4y+40
გამოაკელით 4y განტოლების ორივე მხარეს.
-\left(-4y+40\right)+8y=68
ჩაანაცვლეთ -4y+40-ით x მეორე განტოლებაში, -x+8y=68.
4y-40+8y=68
გაამრავლეთ -1-ზე -4y+40.
12y-40=68
მიუმატეთ 4y 8y-ს.
12y=108
მიუმატეთ 40 განტოლების ორივე მხარეს.
y=9
ორივე მხარე გაყავით 12-ზე.
x=-4\times 9+40
ჩაანაცვლეთ 9-ით y აქ: x=-4y+40. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-36+40
გაამრავლეთ -4-ზე 9.
x=4
მიუმატეთ 40 -36-ს.
x=4,y=9
სისტემა ახლა ამოხსნილია.
x+4y=40,-x+8y=68
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}40\\68\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}1&4\\-1&8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&4\\-1&8\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&4\\-1&8\end{matrix}\right))\left(\begin{matrix}40\\68\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{8-4\left(-1\right)}&-\frac{4}{8-4\left(-1\right)}\\-\frac{-1}{8-4\left(-1\right)}&\frac{1}{8-4\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}&-\frac{1}{3}\\\frac{1}{12}&\frac{1}{12}\end{matrix}\right)\left(\begin{matrix}40\\68\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3}\times 40-\frac{1}{3}\times 68\\\frac{1}{12}\times 40+\frac{1}{12}\times 68\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=4,y=9
ამოიღეთ მატრიცის ელემენტები - x და y.
x+4y=40,-x+8y=68
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-x-4y=-40,-x+8y=68
იმისათვის, რომ x და -x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
-x+x-4y-8y=-40-68
გამოაკელით -x+8y=68 -x-4y=-40-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y-8y=-40-68
მიუმატეთ -x x-ს. პირობები -x და x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-12y=-40-68
მიუმატეთ -4y -8y-ს.
-12y=-108
მიუმატეთ -40 -68-ს.
y=9
ორივე მხარე გაყავით -12-ზე.
-x+8\times 9=68
ჩაანაცვლეთ 9-ით y აქ: -x+8y=68. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-x+72=68
გაამრავლეთ 8-ზე 9.
-x=-4
გამოაკელით 72 განტოლების ორივე მხარეს.
x=4
ორივე მხარე გაყავით -1-ზე.
x=4,y=9
სისტემა ახლა ამოხსნილია.