მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x-y=1,3x+y=9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x-y=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=y+1
მიუმატეთ y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(y+1\right)
ორივე მხარე გაყავით 4-ზე.
x=\frac{1}{4}y+\frac{1}{4}
გაამრავლეთ \frac{1}{4}-ზე y+1.
3\left(\frac{1}{4}y+\frac{1}{4}\right)+y=9
ჩაანაცვლეთ \frac{1+y}{4}-ით x მეორე განტოლებაში, 3x+y=9.
\frac{3}{4}y+\frac{3}{4}+y=9
გაამრავლეთ 3-ზე \frac{1+y}{4}.
\frac{7}{4}y+\frac{3}{4}=9
მიუმატეთ \frac{3y}{4} y-ს.
\frac{7}{4}y=\frac{33}{4}
გამოაკელით \frac{3}{4} განტოლების ორივე მხარეს.
y=\frac{33}{7}
განტოლების ორივე მხარე გაყავით \frac{7}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1}{4}\times \frac{33}{7}+\frac{1}{4}
ჩაანაცვლეთ \frac{33}{7}-ით y აქ: x=\frac{1}{4}y+\frac{1}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{33}{28}+\frac{1}{4}
გაამრავლეთ \frac{1}{4}-ზე \frac{33}{7} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{10}{7}
მიუმატეთ \frac{1}{4} \frac{33}{28}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{10}{7},y=\frac{33}{7}
სისტემა ახლა ამოხსნილია.
4x-y=1,3x+y=9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}4&-1\\3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&-1\\3&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-1\\3&1\end{matrix}\right))\left(\begin{matrix}1\\9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4-\left(-3\right)}&-\frac{-1}{4-\left(-3\right)}\\-\frac{3}{4-\left(-3\right)}&\frac{4}{4-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}&\frac{1}{7}\\-\frac{3}{7}&\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}1\\9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{7}+\frac{1}{7}\times 9\\-\frac{3}{7}+\frac{4}{7}\times 9\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{10}{7}\\\frac{33}{7}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{10}{7},y=\frac{33}{7}
ამოიღეთ მატრიცის ელემენტები - x და y.
4x-y=1,3x+y=9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 4x+3\left(-1\right)y=3,4\times 3x+4y=4\times 9
იმისათვის, რომ 4x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
12x-3y=3,12x+4y=36
გაამარტივეთ.
12x-12x-3y-4y=3-36
გამოაკელით 12x+4y=36 12x-3y=3-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3y-4y=3-36
მიუმატეთ 12x -12x-ს. პირობები 12x და -12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-7y=3-36
მიუმატეთ -3y -4y-ს.
-7y=-33
მიუმატეთ 3 -36-ს.
y=\frac{33}{7}
ორივე მხარე გაყავით -7-ზე.
3x+\frac{33}{7}=9
ჩაანაცვლეთ \frac{33}{7}-ით y აქ: 3x+y=9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x=\frac{30}{7}
გამოაკელით \frac{33}{7} განტოლების ორივე მხარეს.
x=\frac{10}{7}
ორივე მხარე გაყავით 3-ზე.
x=\frac{10}{7},y=\frac{33}{7}
სისტემა ახლა ამოხსნილია.