მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x+3y=17,3x-4y+6=0
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x+3y=17
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=-3y+17
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(-3y+17\right)
ორივე მხარე გაყავით 4-ზე.
x=-\frac{3}{4}y+\frac{17}{4}
გაამრავლეთ \frac{1}{4}-ზე -3y+17.
3\left(-\frac{3}{4}y+\frac{17}{4}\right)-4y+6=0
ჩაანაცვლეთ \frac{-3y+17}{4}-ით x მეორე განტოლებაში, 3x-4y+6=0.
-\frac{9}{4}y+\frac{51}{4}-4y+6=0
გაამრავლეთ 3-ზე \frac{-3y+17}{4}.
-\frac{25}{4}y+\frac{51}{4}+6=0
მიუმატეთ -\frac{9y}{4} -4y-ს.
-\frac{25}{4}y+\frac{75}{4}=0
მიუმატეთ \frac{51}{4} 6-ს.
-\frac{25}{4}y=-\frac{75}{4}
გამოაკელით \frac{75}{4} განტოლების ორივე მხარეს.
y=3
განტოლების ორივე მხარე გაყავით -\frac{25}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{3}{4}\times 3+\frac{17}{4}
ჩაანაცვლეთ 3-ით y აქ: x=-\frac{3}{4}y+\frac{17}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-9+17}{4}
გაამრავლეთ -\frac{3}{4}-ზე 3.
x=2
მიუმატეთ \frac{17}{4} -\frac{9}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=2,y=3
სისტემა ახლა ამოხსნილია.
4x+3y=17,3x-4y+6=0
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}17\\-6\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}4&3\\3&-4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&3\\3&-4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&3\\3&-4\end{matrix}\right))\left(\begin{matrix}17\\-6\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{4\left(-4\right)-3\times 3}&-\frac{3}{4\left(-4\right)-3\times 3}\\-\frac{3}{4\left(-4\right)-3\times 3}&\frac{4}{4\left(-4\right)-3\times 3}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}&\frac{3}{25}\\\frac{3}{25}&-\frac{4}{25}\end{matrix}\right)\left(\begin{matrix}17\\-6\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{25}\times 17+\frac{3}{25}\left(-6\right)\\\frac{3}{25}\times 17-\frac{4}{25}\left(-6\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
4x+3y=17,3x-4y+6=0
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 4x+3\times 3y=3\times 17,4\times 3x+4\left(-4\right)y+4\times 6=0
იმისათვის, რომ 4x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
12x+9y=51,12x-16y+24=0
გაამარტივეთ.
12x-12x+9y+16y-24=51
გამოაკელით 12x-16y+24=0 12x+9y=51-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
9y+16y-24=51
მიუმატეთ 12x -12x-ს. პირობები 12x და -12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
25y-24=51
მიუმატეთ 9y 16y-ს.
25y=75
მიუმატეთ 24 განტოლების ორივე მხარეს.
y=3
ორივე მხარე გაყავით 25-ზე.
3x-4\times 3+6=0
ჩაანაცვლეთ 3-ით y აქ: 3x-4y+6=0. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-12+6=0
გაამრავლეთ -4-ზე 3.
3x-6=0
მიუმატეთ -12 6-ს.
3x=6
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით 3-ზე.
x=2,y=3
სისტემა ახლა ამოხსნილია.