მთავარ კონტენტზე გადასვლა
ამოხსნა y, x-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

y-x=4
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-x=4,y+x=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
y-x=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი y-ისთვის, y-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
y=x+4
მიუმატეთ x განტოლების ორივე მხარეს.
x+4+x=2
ჩაანაცვლეთ x+4-ით y მეორე განტოლებაში, y+x=2.
2x+4=2
მიუმატეთ x x-ს.
2x=-2
გამოაკელით 4 განტოლების ორივე მხარეს.
x=-1
ორივე მხარე გაყავით 2-ზე.
y=-1+4
ჩაანაცვლეთ -1-ით x აქ: y=x+4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y=3
მიუმატეთ 4 -1-ს.
y=3,x=-1
სისტემა ახლა ამოხსნილია.
y-x=4
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-x=4,y+x=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}1&-1\\1&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-1\\1&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&1\end{matrix}\right))\left(\begin{matrix}4\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-1\right)}&-\frac{-1}{1-\left(-1\right)}\\-\frac{1}{1-\left(-1\right)}&\frac{1}{1-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}&\frac{1}{2}\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}4\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\times 4+\frac{1}{2}\times 2\\-\frac{1}{2}\times 4+\frac{1}{2}\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
y=3,x=-1
ამოიღეთ მატრიცის ელემენტები - y და x.
y-x=4
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-x=4,y+x=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
y-y-x-x=4-2
გამოაკელით y+x=2 y-x=4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-x-x=4-2
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-2x=4-2
მიუმატეთ -x -x-ს.
-2x=2
მიუმატეთ 4 -2-ს.
x=-1
ორივე მხარე გაყავით -2-ზე.
y-1=2
ჩაანაცვლეთ -1-ით x აქ: y+x=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y=3
მიუმატეთ 1 განტოლების ორივე მხარეს.
y=3,x=-1
სისტემა ახლა ამოხსნილია.