ამოხსნა y, x-ისთვის
x=-\frac{1}{2}=-0.5
y=\frac{1}{2}=0.5
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
y-x=1
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-3x=2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
y-x=1,y-3x=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
y-x=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი y-ისთვის, y-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
y=x+1
მიუმატეთ x განტოლების ორივე მხარეს.
x+1-3x=2
ჩაანაცვლეთ x+1-ით y მეორე განტოლებაში, y-3x=2.
-2x+1=2
მიუმატეთ x -3x-ს.
-2x=1
გამოაკელით 1 განტოლების ორივე მხარეს.
x=-\frac{1}{2}
ორივე მხარე გაყავით -2-ზე.
y=-\frac{1}{2}+1
ჩაანაცვლეთ -\frac{1}{2}-ით x აქ: y=x+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y=\frac{1}{2}
მიუმატეთ 1 -\frac{1}{2}-ს.
y=\frac{1}{2},x=-\frac{1}{2}
სისტემა ახლა ამოხსნილია.
y-x=1
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-3x=2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
y-x=1,y-3x=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-1\\1&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}y\\x\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\1&-3\end{matrix}\right))\left(\begin{matrix}1\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{-3-\left(-1\right)}&-\frac{-1}{-3-\left(-1\right)}\\-\frac{1}{-3-\left(-1\right)}&\frac{1}{-3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}&-\frac{1}{2}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}1\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{3}{2}-\frac{1}{2}\times 2\\\frac{1}{2}-\frac{1}{2}\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}y\\x\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2}\\-\frac{1}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
y=\frac{1}{2},x=-\frac{1}{2}
ამოიღეთ მატრიცის ელემენტები - y და x.
y-x=1
განიხილეთ პირველი განტოლება. გამოაკელით x ორივე მხარეს.
y-3x=2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
y-x=1,y-3x=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
y-y-x+3x=1-2
გამოაკელით y-3x=2 y-x=1-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-x+3x=1-2
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
2x=1-2
მიუმატეთ -x 3x-ს.
2x=-1
მიუმატეთ 1 -2-ს.
x=-\frac{1}{2}
ორივე მხარე გაყავით 2-ზე.
y-3\left(-\frac{1}{2}\right)=2
ჩაანაცვლეთ -\frac{1}{2}-ით x აქ: y-3x=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
y+\frac{3}{2}=2
გაამრავლეთ -3-ზე -\frac{1}{2}.
y=\frac{1}{2}
გამოაკელით \frac{3}{2} განტოლების ორივე მხარეს.
y=\frac{1}{2},x=-\frac{1}{2}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}