მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-y=3,2x+3y=19
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-y=3
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=y+3
მიუმატეთ y განტოლების ორივე მხარეს.
2\left(y+3\right)+3y=19
ჩაანაცვლეთ y+3-ით x მეორე განტოლებაში, 2x+3y=19.
2y+6+3y=19
გაამრავლეთ 2-ზე y+3.
5y+6=19
მიუმატეთ 2y 3y-ს.
5y=13
გამოაკელით 6 განტოლების ორივე მხარეს.
y=\frac{13}{5}
ორივე მხარე გაყავით 5-ზე.
x=\frac{13}{5}+3
ჩაანაცვლეთ \frac{13}{5}-ით y აქ: x=y+3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{28}{5}
მიუმატეთ 3 \frac{13}{5}-ს.
x=\frac{28}{5},y=\frac{13}{5}
სისტემა ახლა ამოხსნილია.
x-y=3,2x+3y=19
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\19\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}1&-1\\2&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-1\\2&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-1\\2&3\end{matrix}\right))\left(\begin{matrix}3\\19\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{3-\left(-2\right)}&-\frac{-1}{3-\left(-2\right)}\\-\frac{2}{3-\left(-2\right)}&\frac{1}{3-\left(-2\right)}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}&\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}3\\19\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{5}\times 3+\frac{1}{5}\times 19\\-\frac{2}{5}\times 3+\frac{1}{5}\times 19\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{28}{5}\\\frac{13}{5}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{28}{5},y=\frac{13}{5}
ამოიღეთ მატრიცის ელემენტები - x და y.
x-y=3,2x+3y=19
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+2\left(-1\right)y=2\times 3,2x+3y=19
იმისათვის, რომ x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
2x-2y=6,2x+3y=19
გაამარტივეთ.
2x-2x-2y-3y=6-19
გამოაკელით 2x+3y=19 2x-2y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-2y-3y=6-19
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-5y=6-19
მიუმატეთ -2y -3y-ს.
-5y=-13
მიუმატეთ 6 -19-ს.
y=\frac{13}{5}
ორივე მხარე გაყავით -5-ზე.
2x+3\times \frac{13}{5}=19
ჩაანაცვლეთ \frac{13}{5}-ით y აქ: 2x+3y=19. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x+\frac{39}{5}=19
გაამრავლეთ 3-ზე \frac{13}{5}.
2x=\frac{56}{5}
გამოაკელით \frac{39}{5} განტოლების ორივე მხარეს.
x=\frac{28}{5}
ორივე მხარე გაყავით 2-ზე.
x=\frac{28}{5},y=\frac{13}{5}
სისტემა ახლა ამოხსნილია.