მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-4y=-8,x-2y=-2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-4y=-8
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=4y-8
მიუმატეთ 4y განტოლების ორივე მხარეს.
4y-8-2y=-2
ჩაანაცვლეთ -8+4y-ით x მეორე განტოლებაში, x-2y=-2.
2y-8=-2
მიუმატეთ 4y -2y-ს.
2y=6
მიუმატეთ 8 განტოლების ორივე მხარეს.
y=3
ორივე მხარე გაყავით 2-ზე.
x=4\times 3-8
ჩაანაცვლეთ 3-ით y აქ: x=4y-8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=12-8
გაამრავლეთ 4-ზე 3.
x=4
მიუმატეთ -8 12-ს.
x=4,y=3
სისტემა ახლა ამოხსნილია.
x-4y=-8,x-2y=-2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-8\\-2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-4\\1&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-4\\1&-2\end{matrix}\right))\left(\begin{matrix}-8\\-2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{-2-\left(-4\right)}&-\frac{-4}{-2-\left(-4\right)}\\-\frac{1}{-2-\left(-4\right)}&\frac{1}{-2-\left(-4\right)}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&2\\-\frac{1}{2}&\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}-8\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\left(-8\right)+2\left(-2\right)\\-\frac{1}{2}\left(-8\right)+\frac{1}{2}\left(-2\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=4,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
x-4y=-8,x-2y=-2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x-4y+2y=-8+2
გამოაკელით x-2y=-2 x-4y=-8-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-4y+2y=-8+2
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-2y=-8+2
მიუმატეთ -4y 2y-ს.
-2y=-6
მიუმატეთ -8 2-ს.
y=3
ორივე მხარე გაყავით -2-ზე.
x-2\times 3=-2
ჩაანაცვლეთ 3-ით y აქ: x-2y=-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x-6=-2
გაამრავლეთ -2-ზე 3.
x=4
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=4,y=3
სისტემა ახლა ამოხსნილია.