მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-10y=-14,-5x-8y=12
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x-10y=-14
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=10y-14
მიუმატეთ 10y განტოლების ორივე მხარეს.
-5\left(10y-14\right)-8y=12
ჩაანაცვლეთ 10y-14-ით x მეორე განტოლებაში, -5x-8y=12.
-50y+70-8y=12
გაამრავლეთ -5-ზე 10y-14.
-58y+70=12
მიუმატეთ -50y -8y-ს.
-58y=-58
გამოაკელით 70 განტოლების ორივე მხარეს.
y=1
ორივე მხარე გაყავით -58-ზე.
x=10-14
ჩაანაცვლეთ 1-ით y აქ: x=10y-14. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-4
მიუმატეთ -14 10-ს.
x=-4,y=1
სისტემა ახლა ამოხსნილია.
x-10y=-14,-5x-8y=12
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-14\\12\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&-10\\-5&-8\end{matrix}\right))\left(\begin{matrix}-14\\12\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{8}{-8-\left(-10\left(-5\right)\right)}&-\frac{-10}{-8-\left(-10\left(-5\right)\right)}\\-\frac{-5}{-8-\left(-10\left(-5\right)\right)}&\frac{1}{-8-\left(-10\left(-5\right)\right)}\end{matrix}\right)\left(\begin{matrix}-14\\12\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}&-\frac{5}{29}\\-\frac{5}{58}&-\frac{1}{58}\end{matrix}\right)\left(\begin{matrix}-14\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{29}\left(-14\right)-\frac{5}{29}\times 12\\-\frac{5}{58}\left(-14\right)-\frac{1}{58}\times 12\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-4,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
x-10y=-14,-5x-8y=12
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-5x-5\left(-10\right)y=-5\left(-14\right),-5x-8y=12
იმისათვის, რომ x და -5x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -5-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
-5x+50y=70,-5x-8y=12
გაამარტივეთ.
-5x+5x+50y+8y=70-12
გამოაკელით -5x-8y=12 -5x+50y=70-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
50y+8y=70-12
მიუმატეთ -5x 5x-ს. პირობები -5x და 5x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
58y=70-12
მიუმატეთ 50y 8y-ს.
58y=58
მიუმატეთ 70 -12-ს.
y=1
ორივე მხარე გაყავით 58-ზე.
-5x-8=12
ჩაანაცვლეთ 1-ით y აქ: -5x-8y=12. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-5x=20
მიუმატეთ 8 განტოლების ორივე მხარეს.
x=-4
ორივე მხარე გაყავით -5-ზე.
x=-4,y=1
სისტემა ახლა ამოხსნილია.