ამოხსნა x, p-ისთვის
x=8\text{, }p=6
x=-6\text{, }p=-8
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
p-x+2=0,x^{2}+p^{2}-100=0
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
p-x+2=0
ამოხსენით p-x+2=0 p-ისთვის, p-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
p-x=-2
გამოაკელით 2 განტოლების ორივე მხარეს.
p=x-2
გამოაკელით -x განტოლების ორივე მხარეს.
x^{2}+\left(x-2\right)^{2}-100=0
ჩაანაცვლეთ x-2-ით p მეორე განტოლებაში, x^{2}+p^{2}-100=0.
x^{2}+x^{2}-4x+4-100=0
აიყვანეთ კვადრატში x-2.
2x^{2}-4x+4-100=0
მიუმატეთ x^{2} x^{2}-ს.
2x^{2}-4x-96=0
მიუმატეთ 1\left(-2\right)^{2} -100-ს.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 2\left(-96\right)}}{2\times 2}
ეს განტოლება სტანდარტული ფორმისაა: ax^{2}+bx+c=0. ჩაანაცვლეთ 1+1\times 1^{2}-ით a, 1\left(-2\right)\times 1\times 2-ით b და -96-ით c კვადრატულ ფორმულაში, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 2\left(-96\right)}}{2\times 2}
აიყვანეთ კვადრატში 1\left(-2\right)\times 1\times 2.
x=\frac{-\left(-4\right)±\sqrt{16-8\left(-96\right)}}{2\times 2}
გაამრავლეთ -4-ზე 1+1\times 1^{2}.
x=\frac{-\left(-4\right)±\sqrt{16+768}}{2\times 2}
გაამრავლეთ -8-ზე -96.
x=\frac{-\left(-4\right)±\sqrt{784}}{2\times 2}
მიუმატეთ 16 768-ს.
x=\frac{-\left(-4\right)±28}{2\times 2}
აიღეთ 784-ის კვადრატული ფესვი.
x=\frac{4±28}{2\times 2}
1\left(-2\right)\times 1\times 2-ის საპირისპიროა 4.
x=\frac{4±28}{4}
გაამრავლეთ 2-ზე 1+1\times 1^{2}.
x=\frac{32}{4}
ახლა ამოხსენით განტოლება x=\frac{4±28}{4} როცა ± პლიუსია. მიუმატეთ 4 28-ს.
x=8
გაყავით 32 4-ზე.
x=-\frac{24}{4}
ახლა ამოხსენით განტოლება x=\frac{4±28}{4} როცა ± მინუსია. გამოაკელით 28 4-ს.
x=-6
გაყავით -24 4-ზე.
p=8-2
არსებობს x-ის ორი ამონახსნი: 8 და -6. ჩაანაცვლეთ 8-ით x განტოლებაში p=x-2, რათა იპოვოთ p-ის შესაბამისი ამონახსნი, რომელიც ორივე განტოლებას აკმაყოფილებს.
p=6
მიუმატეთ 1\times 8 -2-ს.
p=-6-2
ახლა ჩაანაცვლეთ -6-ით x განტოლებაში p=x-2 და ამოხსენით, რათა იპოვოთ p-ის შესაბამისი ამონახსნი, რომელიც ორივე განტოლებას აკმაყოფილებს.
p=-8
მიუმატეთ -6 -2-ს.
p=6,x=8\text{ or }p=-8,x=-6
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}