მამრავლი
\left(x-\left(-\sqrt{5}-2\right)\right)\left(x-\left(\sqrt{5}-2\right)\right)
შეფასება
x^{2}+4x-1
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
factor(x^{2}+4x-1)
გამოაკელით 3 2-ს -1-ის მისაღებად.
x^{2}+4x-1=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-4±\sqrt{4^{2}-4\left(-1\right)}}{2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-4±\sqrt{16-4\left(-1\right)}}{2}
აიყვანეთ კვადრატში 4.
x=\frac{-4±\sqrt{16+4}}{2}
გაამრავლეთ -4-ზე -1.
x=\frac{-4±\sqrt{20}}{2}
მიუმატეთ 16 4-ს.
x=\frac{-4±2\sqrt{5}}{2}
აიღეთ 20-ის კვადრატული ფესვი.
x=\frac{2\sqrt{5}-4}{2}
ახლა ამოხსენით განტოლება x=\frac{-4±2\sqrt{5}}{2} როცა ± პლიუსია. მიუმატეთ -4 2\sqrt{5}-ს.
x=\sqrt{5}-2
გაყავით -4+2\sqrt{5} 2-ზე.
x=\frac{-2\sqrt{5}-4}{2}
ახლა ამოხსენით განტოლება x=\frac{-4±2\sqrt{5}}{2} როცა ± მინუსია. გამოაკელით 2\sqrt{5} -4-ს.
x=-\sqrt{5}-2
გაყავით -4-2\sqrt{5} 2-ზე.
x^{2}+4x-1=\left(x-\left(\sqrt{5}-2\right)\right)\left(x-\left(-\sqrt{5}-2\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით -2+\sqrt{5} x_{1}-ისთვის და -2-\sqrt{5} x_{2}-ისთვის.
x^{2}+4x-1
გამოაკელით 3 2-ს -1-ის მისაღებად.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}