მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x-9y=0
განიხილეთ პირველი განტოლება. გამოაკელით 9y ორივე მხარეს.
x+y=50,x-9y=0
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=50
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y+50
გამოაკელით y განტოლების ორივე მხარეს.
-y+50-9y=0
ჩაანაცვლეთ -y+50-ით x მეორე განტოლებაში, x-9y=0.
-10y+50=0
მიუმატეთ -y -9y-ს.
-10y=-50
გამოაკელით 50 განტოლების ორივე მხარეს.
y=5
ორივე მხარე გაყავით -10-ზე.
x=-5+50
ჩაანაცვლეთ 5-ით y აქ: x=-y+50. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=45
მიუმატეთ 50 -5-ს.
x=45,y=5
სისტემა ახლა ამოხსნილია.
x-9y=0
განიხილეთ პირველი განტოლება. გამოაკელით 9y ორივე მხარეს.
x+y=50,x-9y=0
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}50\\0\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}1&1\\1&-9\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\1&-9\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\1&-9\end{matrix}\right))\left(\begin{matrix}50\\0\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{9}{-9-1}&-\frac{1}{-9-1}\\-\frac{1}{-9-1}&\frac{1}{-9-1}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}&\frac{1}{10}\\\frac{1}{10}&-\frac{1}{10}\end{matrix}\right)\left(\begin{matrix}50\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{10}\times 50\\\frac{1}{10}\times 50\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}45\\5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=45,y=5
ამოიღეთ მატრიცის ელემენტები - x და y.
x-9y=0
განიხილეთ პირველი განტოლება. გამოაკელით 9y ორივე მხარეს.
x+y=50,x-9y=0
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x-x+y+9y=50
გამოაკელით x-9y=0 x+y=50-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
y+9y=50
მიუმატეთ x -x-ს. პირობები x და -x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
10y=50
მიუმატეთ y 9y-ს.
y=5
ორივე მხარე გაყავით 10-ზე.
x-9\times 5=0
ჩაანაცვლეთ 5-ით y აქ: x-9y=0. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x-45=0
გაამრავლეთ -9-ზე 5.
x=45
მიუმატეთ 45 განტოლების ორივე მხარეს.
x=45,y=5
სისტემა ახლა ამოხსნილია.