მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

x+y=5,2x+7y=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y+5
გამოაკელით y განტოლების ორივე მხარეს.
2\left(-y+5\right)+7y=2
ჩაანაცვლეთ -y+5-ით x მეორე განტოლებაში, 2x+7y=2.
-2y+10+7y=2
გაამრავლეთ 2-ზე -y+5.
5y+10=2
მიუმატეთ -2y 7y-ს.
5y=-8
გამოაკელით 10 განტოლების ორივე მხარეს.
y=-\frac{8}{5}
ორივე მხარე გაყავით 5-ზე.
x=-\left(-\frac{8}{5}\right)+5
ჩაანაცვლეთ -\frac{8}{5}-ით y აქ: x=-y+5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{8}{5}+5
გაამრავლეთ -1-ზე -\frac{8}{5}.
x=\frac{33}{5}
მიუმატეთ 5 \frac{8}{5}-ს.
x=\frac{33}{5},y=-\frac{8}{5}
სისტემა ახლა ამოხსნილია.
x+y=5,2x+7y=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\2&7\end{matrix}\right))\left(\begin{matrix}1&1\\2&7\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&7\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\2&7\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&7\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\2&7\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{7-2}&-\frac{1}{7-2}\\-\frac{2}{7-2}&\frac{1}{7-2}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}&-\frac{1}{5}\\-\frac{2}{5}&\frac{1}{5}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{7}{5}\times 5-\frac{1}{5}\times 2\\-\frac{2}{5}\times 5+\frac{1}{5}\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{33}{5}\\-\frac{8}{5}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{33}{5},y=-\frac{8}{5}
ამოიღეთ მატრიცის ელემენტები - x და y.
x+y=5,2x+7y=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x+2y=2\times 5,2x+7y=2
იმისათვის, რომ x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 1-ზე.
2x+2y=10,2x+7y=2
გაამარტივეთ.
2x-2x+2y-7y=10-2
გამოაკელით 2x+7y=2 2x+2y=10-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2y-7y=10-2
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-5y=10-2
მიუმატეთ 2y -7y-ს.
-5y=8
მიუმატეთ 10 -2-ს.
y=-\frac{8}{5}
ორივე მხარე გაყავით -5-ზე.
2x+7\left(-\frac{8}{5}\right)=2
ჩაანაცვლეთ -\frac{8}{5}-ით y აქ: 2x+7y=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x-\frac{56}{5}=2
გაამრავლეთ 7-ზე -\frac{8}{5}.
2x=\frac{66}{5}
მიუმატეთ \frac{56}{5} განტოლების ორივე მხარეს.
x=\frac{33}{5}
ორივე მხარე გაყავით 2-ზე.
x=\frac{33}{5},y=-\frac{8}{5}
სისტემა ახლა ამოხსნილია.