მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

y-3x=-2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
x+y=-6,-3x+y=-2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
x+y=-6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
x=-y-6
გამოაკელით y განტოლების ორივე მხარეს.
-3\left(-y-6\right)+y=-2
ჩაანაცვლეთ -y-6-ით x მეორე განტოლებაში, -3x+y=-2.
3y+18+y=-2
გაამრავლეთ -3-ზე -y-6.
4y+18=-2
მიუმატეთ 3y y-ს.
4y=-20
გამოაკელით 18 განტოლების ორივე მხარეს.
y=-5
ორივე მხარე გაყავით 4-ზე.
x=-\left(-5\right)-6
ჩაანაცვლეთ -5-ით y აქ: x=-y-6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=5-6
გაამრავლეთ -1-ზე -5.
x=-1
მიუმატეთ -6 5-ს.
x=-1,y=-5
სისტემა ახლა ამოხსნილია.
y-3x=-2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
x+y=-6,-3x+y=-2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\-2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}1&1\\-3&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}1&1\\-3&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}1&1\\-3&1\end{matrix}\right))\left(\begin{matrix}-6\\-2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{1-\left(-3\right)}&-\frac{1}{1-\left(-3\right)}\\-\frac{-3}{1-\left(-3\right)}&\frac{1}{1-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&-\frac{1}{4}\\\frac{3}{4}&\frac{1}{4}\end{matrix}\right)\left(\begin{matrix}-6\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\left(-6\right)-\frac{1}{4}\left(-2\right)\\\frac{3}{4}\left(-6\right)+\frac{1}{4}\left(-2\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\-5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-1,y=-5
ამოიღეთ მატრიცის ელემენტები - x და y.
y-3x=-2
განიხილეთ პირველი განტოლება. გამოაკელით 3x ორივე მხარეს.
x+y=-6,-3x+y=-2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
x+3x+y-y=-6+2
გამოაკელით -3x+y=-2 x+y=-6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
x+3x=-6+2
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
4x=-6+2
მიუმატეთ x 3x-ს.
4x=-4
მიუმატეთ -6 2-ს.
x=-1
ორივე მხარე გაყავით 4-ზე.
-3\left(-1\right)+y=-2
ჩაანაცვლეთ -1-ით x აქ: -3x+y=-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
3+y=-2
გაამრავლეთ -3-ზე -1.
y=-5
გამოაკელით 3 განტოლების ორივე მხარეს.
x=-1,y=-5
სისტემა ახლა ამოხსნილია.