მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

5x-8y=9,2x+y=12
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x-8y=9
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=8y+9
მიუმატეთ 8y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(8y+9\right)
ორივე მხარე გაყავით 5-ზე.
x=\frac{8}{5}y+\frac{9}{5}
გაამრავლეთ \frac{1}{5}-ზე 8y+9.
2\left(\frac{8}{5}y+\frac{9}{5}\right)+y=12
ჩაანაცვლეთ \frac{8y+9}{5}-ით x მეორე განტოლებაში, 2x+y=12.
\frac{16}{5}y+\frac{18}{5}+y=12
გაამრავლეთ 2-ზე \frac{8y+9}{5}.
\frac{21}{5}y+\frac{18}{5}=12
მიუმატეთ \frac{16y}{5} y-ს.
\frac{21}{5}y=\frac{42}{5}
გამოაკელით \frac{18}{5} განტოლების ორივე მხარეს.
y=2
განტოლების ორივე მხარე გაყავით \frac{21}{5}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{8}{5}\times 2+\frac{9}{5}
ჩაანაცვლეთ 2-ით y აქ: x=\frac{8}{5}y+\frac{9}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{16+9}{5}
გაამრავლეთ \frac{8}{5}-ზე 2.
x=5
მიუმატეთ \frac{9}{5} \frac{16}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=5,y=2
სისტემა ახლა ამოხსნილია.
5x-8y=9,2x+y=12
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&-8\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}9\\12\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}5&-8\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&-8\\2&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-8\\2&1\end{matrix}\right))\left(\begin{matrix}9\\12\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-\left(-8\times 2\right)}&-\frac{-8}{5-\left(-8\times 2\right)}\\-\frac{2}{5-\left(-8\times 2\right)}&\frac{5}{5-\left(-8\times 2\right)}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}&\frac{8}{21}\\-\frac{2}{21}&\frac{5}{21}\end{matrix}\right)\left(\begin{matrix}9\\12\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{21}\times 9+\frac{8}{21}\times 12\\-\frac{2}{21}\times 9+\frac{5}{21}\times 12\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=5,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
5x-8y=9,2x+y=12
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 5x+2\left(-8\right)y=2\times 9,5\times 2x+5y=5\times 12
იმისათვის, რომ 5x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 5-ზე.
10x-16y=18,10x+5y=60
გაამარტივეთ.
10x-10x-16y-5y=18-60
გამოაკელით 10x+5y=60 10x-16y=18-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-16y-5y=18-60
მიუმატეთ 10x -10x-ს. პირობები 10x და -10x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-21y=18-60
მიუმატეთ -16y -5y-ს.
-21y=-42
მიუმატეთ 18 -60-ს.
y=2
ორივე მხარე გაყავით -21-ზე.
2x+2=12
ჩაანაცვლეთ 2-ით y აქ: 2x+y=12. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=10
გამოაკელით 2 განტოლების ორივე მხარეს.
x=5
ორივე მხარე გაყავით 2-ზე.
x=5,y=2
სისტემა ახლა ამოხსნილია.