ამოხსნა x, y-ისთვის
x=1
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
5x-7y=-9,-2x-y=-4
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x-7y=-9
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=7y-9
მიუმატეთ 7y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(7y-9\right)
ორივე მხარე გაყავით 5-ზე.
x=\frac{7}{5}y-\frac{9}{5}
გაამრავლეთ \frac{1}{5}-ზე 7y-9.
-2\left(\frac{7}{5}y-\frac{9}{5}\right)-y=-4
ჩაანაცვლეთ \frac{7y-9}{5}-ით x მეორე განტოლებაში, -2x-y=-4.
-\frac{14}{5}y+\frac{18}{5}-y=-4
გაამრავლეთ -2-ზე \frac{7y-9}{5}.
-\frac{19}{5}y+\frac{18}{5}=-4
მიუმატეთ -\frac{14y}{5} -y-ს.
-\frac{19}{5}y=-\frac{38}{5}
გამოაკელით \frac{18}{5} განტოლების ორივე მხარეს.
y=2
განტოლების ორივე მხარე გაყავით -\frac{19}{5}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{7}{5}\times 2-\frac{9}{5}
ჩაანაცვლეთ 2-ით y აქ: x=\frac{7}{5}y-\frac{9}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{14-9}{5}
გაამრავლეთ \frac{7}{5}-ზე 2.
x=1
მიუმატეთ -\frac{9}{5} \frac{14}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=1,y=2
სისტემა ახლა ამოხსნილია.
5x-7y=-9,-2x-y=-4
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-9\\-4\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-7\\-2&-1\end{matrix}\right))\left(\begin{matrix}-9\\-4\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&-\frac{-7}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\\-\frac{-2}{5\left(-1\right)-\left(-7\left(-2\right)\right)}&\frac{5}{5\left(-1\right)-\left(-7\left(-2\right)\right)}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}&-\frac{7}{19}\\-\frac{2}{19}&-\frac{5}{19}\end{matrix}\right)\left(\begin{matrix}-9\\-4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{19}\left(-9\right)-\frac{7}{19}\left(-4\right)\\-\frac{2}{19}\left(-9\right)-\frac{5}{19}\left(-4\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
5x-7y=-9,-2x-y=-4
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-2\times 5x-2\left(-7\right)y=-2\left(-9\right),5\left(-2\right)x+5\left(-1\right)y=5\left(-4\right)
იმისათვის, რომ 5x და -2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 5-ზე.
-10x+14y=18,-10x-5y=-20
გაამარტივეთ.
-10x+10x+14y+5y=18+20
გამოაკელით -10x-5y=-20 -10x+14y=18-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
14y+5y=18+20
მიუმატეთ -10x 10x-ს. პირობები -10x და 10x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
19y=18+20
მიუმატეთ 14y 5y-ს.
19y=38
მიუმატეთ 18 20-ს.
y=2
ორივე მხარე გაყავით 19-ზე.
-2x-2=-4
ჩაანაცვლეთ 2-ით y აქ: -2x-y=-4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-2x=-2
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით -2-ზე.
x=1,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}