ამოხსნა x, y-ისთვის
x=1
y=0
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
5x-5y=5,-6x+5y=-6
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x-5y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=5y+5
მიუმატეთ 5y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(5y+5\right)
ორივე მხარე გაყავით 5-ზე.
x=y+1
გაამრავლეთ \frac{1}{5}-ზე 5+5y.
-6\left(y+1\right)+5y=-6
ჩაანაცვლეთ y+1-ით x მეორე განტოლებაში, -6x+5y=-6.
-6y-6+5y=-6
გაამრავლეთ -6-ზე y+1.
-y-6=-6
მიუმატეთ -6y 5y-ს.
-y=0
მიუმატეთ 6 განტოლების ორივე მხარეს.
y=0
ორივე მხარე გაყავით -1-ზე.
x=1
ჩაანაცვლეთ 0-ით y აქ: x=y+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1,y=0
სისტემა ახლა ამოხსნილია.
5x-5y=5,-6x+5y=-6
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-6\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&-5\\-6&5\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&-5\\-6&5\end{matrix}\right))\left(\begin{matrix}5\\-6\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}&-\frac{-5}{5\times 5-\left(-5\left(-6\right)\right)}\\-\frac{-6}{5\times 5-\left(-5\left(-6\right)\right)}&\frac{5}{5\times 5-\left(-5\left(-6\right)\right)}\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1&-1\\-\frac{6}{5}&-1\end{matrix}\right)\left(\begin{matrix}5\\-6\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5-\left(-6\right)\\-\frac{6}{5}\times 5-\left(-6\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\0\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=0
ამოიღეთ მატრიცის ელემენტები - x და y.
5x-5y=5,-6x+5y=-6
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-6\times 5x-6\left(-5\right)y=-6\times 5,5\left(-6\right)x+5\times 5y=5\left(-6\right)
იმისათვის, რომ 5x და -6x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -6-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 5-ზე.
-30x+30y=-30,-30x+25y=-30
გაამარტივეთ.
-30x+30x+30y-25y=-30+30
გამოაკელით -30x+25y=-30 -30x+30y=-30-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
30y-25y=-30+30
მიუმატეთ -30x 30x-ს. პირობები -30x და 30x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
5y=-30+30
მიუმატეთ 30y -25y-ს.
5y=0
მიუმატეთ -30 30-ს.
y=0
ორივე მხარე გაყავით 5-ზე.
-6x=-6
ჩაანაცვლეთ 0-ით y აქ: -6x+5y=-6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1
ორივე მხარე გაყავით -6-ზე.
x=1,y=0
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}