ამოხსნა x, y-ისთვის
x=6
y=-11
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
5x+y=19,2x+y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
5x+y=19
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
5x=-y+19
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{5}\left(-y+19\right)
ორივე მხარე გაყავით 5-ზე.
x=-\frac{1}{5}y+\frac{19}{5}
გაამრავლეთ \frac{1}{5}-ზე -y+19.
2\left(-\frac{1}{5}y+\frac{19}{5}\right)+y=1
ჩაანაცვლეთ \frac{-y+19}{5}-ით x მეორე განტოლებაში, 2x+y=1.
-\frac{2}{5}y+\frac{38}{5}+y=1
გაამრავლეთ 2-ზე \frac{-y+19}{5}.
\frac{3}{5}y+\frac{38}{5}=1
მიუმატეთ -\frac{2y}{5} y-ს.
\frac{3}{5}y=-\frac{33}{5}
გამოაკელით \frac{38}{5} განტოლების ორივე მხარეს.
y=-11
განტოლების ორივე მხარე გაყავით \frac{3}{5}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{5}\left(-11\right)+\frac{19}{5}
ჩაანაცვლეთ -11-ით y აქ: x=-\frac{1}{5}y+\frac{19}{5}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{11+19}{5}
გაამრავლეთ -\frac{1}{5}-ზე -11.
x=6
მიუმატეთ \frac{19}{5} \frac{11}{5}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=6,y=-11
სისტემა ახლა ამოხსნილია.
5x+y=19,2x+y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}5&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}19\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}5&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}5&1\\2&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}5&1\\2&1\end{matrix}\right))\left(\begin{matrix}19\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5-2}&-\frac{1}{5-2}\\-\frac{2}{5-2}&\frac{5}{5-2}\end{matrix}\right)\left(\begin{matrix}19\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}&-\frac{1}{3}\\-\frac{2}{3}&\frac{5}{3}\end{matrix}\right)\left(\begin{matrix}19\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3}\times 19-\frac{1}{3}\\-\frac{2}{3}\times 19+\frac{5}{3}\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-11\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=6,y=-11
ამოიღეთ მატრიცის ელემენტები - x და y.
5x+y=19,2x+y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
5x-2x+y-y=19-1
გამოაკელით 2x+y=1 5x+y=19-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
5x-2x=19-1
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
3x=19-1
მიუმატეთ 5x -2x-ს.
3x=18
მიუმატეთ 19 -1-ს.
x=6
ორივე მხარე გაყავით 3-ზე.
2\times 6+y=1
ჩაანაცვლეთ 6-ით x აქ: 2x+y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
12+y=1
გაამრავლეთ 2-ზე 6.
y=-11
გამოაკელით 12 განტოლების ორივე მხარეს.
x=6,y=-11
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}