მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x-3y=5,3x+2y=8
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x-3y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=3y+5
მიუმატეთ 3y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(3y+5\right)
ორივე მხარე გაყავით 4-ზე.
x=\frac{3}{4}y+\frac{5}{4}
გაამრავლეთ \frac{1}{4}-ზე 3y+5.
3\left(\frac{3}{4}y+\frac{5}{4}\right)+2y=8
ჩაანაცვლეთ \frac{3y+5}{4}-ით x მეორე განტოლებაში, 3x+2y=8.
\frac{9}{4}y+\frac{15}{4}+2y=8
გაამრავლეთ 3-ზე \frac{3y+5}{4}.
\frac{17}{4}y+\frac{15}{4}=8
მიუმატეთ \frac{9y}{4} 2y-ს.
\frac{17}{4}y=\frac{17}{4}
გამოაკელით \frac{15}{4} განტოლების ორივე მხარეს.
y=1
განტოლების ორივე მხარე გაყავით \frac{17}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{3+5}{4}
ჩაანაცვლეთ 1-ით y აქ: x=\frac{3}{4}y+\frac{5}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2
მიუმატეთ \frac{5}{4} \frac{3}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=2,y=1
სისტემა ახლა ამოხსნილია.
4x-3y=5,3x+2y=8
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\8\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}4&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&-3\\3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&-3\\3&2\end{matrix}\right))\left(\begin{matrix}5\\8\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{4\times 2-\left(-3\times 3\right)}&-\frac{-3}{4\times 2-\left(-3\times 3\right)}\\-\frac{3}{4\times 2-\left(-3\times 3\right)}&\frac{4}{4\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}&\frac{3}{17}\\-\frac{3}{17}&\frac{4}{17}\end{matrix}\right)\left(\begin{matrix}5\\8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{17}\times 5+\frac{3}{17}\times 8\\-\frac{3}{17}\times 5+\frac{4}{17}\times 8\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=1
ამოიღეთ მატრიცის ელემენტები - x და y.
4x-3y=5,3x+2y=8
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 4x+3\left(-3\right)y=3\times 5,4\times 3x+4\times 2y=4\times 8
იმისათვის, რომ 4x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
12x-9y=15,12x+8y=32
გაამარტივეთ.
12x-12x-9y-8y=15-32
გამოაკელით 12x+8y=32 12x-9y=15-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-9y-8y=15-32
მიუმატეთ 12x -12x-ს. პირობები 12x და -12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-17y=15-32
მიუმატეთ -9y -8y-ს.
-17y=-17
მიუმატეთ 15 -32-ს.
y=1
ორივე მხარე გაყავით -17-ზე.
3x+2=8
ჩაანაცვლეთ 1-ით y აქ: 3x+2y=8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x=6
გამოაკელით 2 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით 3-ზე.
x=2,y=1
სისტემა ახლა ამოხსნილია.