ამოხსნა x, y-ისთვის
x=2
y=-4
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
4x+y=4,-3x-6y=18
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x+y=4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=-y+4
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(-y+4\right)
ორივე მხარე გაყავით 4-ზე.
x=-\frac{1}{4}y+1
გაამრავლეთ \frac{1}{4}-ზე -y+4.
-3\left(-\frac{1}{4}y+1\right)-6y=18
ჩაანაცვლეთ -\frac{y}{4}+1-ით x მეორე განტოლებაში, -3x-6y=18.
\frac{3}{4}y-3-6y=18
გაამრავლეთ -3-ზე -\frac{y}{4}+1.
-\frac{21}{4}y-3=18
მიუმატეთ \frac{3y}{4} -6y-ს.
-\frac{21}{4}y=21
მიუმატეთ 3 განტოლების ორივე მხარეს.
y=-4
განტოლების ორივე მხარე გაყავით -\frac{21}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{4}\left(-4\right)+1
ჩაანაცვლეთ -4-ით y აქ: x=-\frac{1}{4}y+1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1+1
გაამრავლეთ -\frac{1}{4}-ზე -4.
x=2
მიუმატეთ 1 1-ს.
x=2,y=-4
სისტემა ახლა ამოხსნილია.
4x+y=4,-3x-6y=18
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\18\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&1\\-3&-6\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\-3&-6\end{matrix}\right))\left(\begin{matrix}4\\18\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{6}{4\left(-6\right)-\left(-3\right)}&-\frac{1}{4\left(-6\right)-\left(-3\right)}\\-\frac{-3}{4\left(-6\right)-\left(-3\right)}&\frac{4}{4\left(-6\right)-\left(-3\right)}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}&\frac{1}{21}\\-\frac{1}{7}&-\frac{4}{21}\end{matrix}\right)\left(\begin{matrix}4\\18\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{7}\times 4+\frac{1}{21}\times 18\\-\frac{1}{7}\times 4-\frac{4}{21}\times 18\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\-4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=-4
ამოიღეთ მატრიცის ელემენტები - x და y.
4x+y=4,-3x-6y=18
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-3\times 4x-3y=-3\times 4,4\left(-3\right)x+4\left(-6\right)y=4\times 18
იმისათვის, რომ 4x და -3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
-12x-3y=-12,-12x-24y=72
გაამარტივეთ.
-12x+12x-3y+24y=-12-72
გამოაკელით -12x-24y=72 -12x-3y=-12-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-3y+24y=-12-72
მიუმატეთ -12x 12x-ს. პირობები -12x და 12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
21y=-12-72
მიუმატეთ -3y 24y-ს.
21y=-84
მიუმატეთ -12 -72-ს.
y=-4
ორივე მხარე გაყავით 21-ზე.
-3x-6\left(-4\right)=18
ჩაანაცვლეთ -4-ით y აქ: -3x-6y=18. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
-3x+24=18
გაამრავლეთ -6-ზე -4.
-3x=-6
გამოაკელით 24 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით -3-ზე.
x=2,y=-4
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}