მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x+y=20,x+3y=-17
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x+y=20
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=-y+20
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(-y+20\right)
ორივე მხარე გაყავით 4-ზე.
x=-\frac{1}{4}y+5
გაამრავლეთ \frac{1}{4}-ზე -y+20.
-\frac{1}{4}y+5+3y=-17
ჩაანაცვლეთ -\frac{y}{4}+5-ით x მეორე განტოლებაში, x+3y=-17.
\frac{11}{4}y+5=-17
მიუმატეთ -\frac{y}{4} 3y-ს.
\frac{11}{4}y=-22
გამოაკელით 5 განტოლების ორივე მხარეს.
y=-8
განტოლების ორივე მხარე გაყავით \frac{11}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{4}\left(-8\right)+5
ჩაანაცვლეთ -8-ით y აქ: x=-\frac{1}{4}y+5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=2+5
გაამრავლეთ -\frac{1}{4}-ზე -8.
x=7
მიუმატეთ 5 2-ს.
x=7,y=-8
სისტემა ახლა ამოხსნილია.
4x+y=20,x+3y=-17
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\-17\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&1\\1&3\end{matrix}\right))\left(\begin{matrix}4&1\\1&3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&3\end{matrix}\right))\left(\begin{matrix}20\\-17\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&1\\1&3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&3\end{matrix}\right))\left(\begin{matrix}20\\-17\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&1\\1&3\end{matrix}\right))\left(\begin{matrix}20\\-17\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{4\times 3-1}&-\frac{1}{4\times 3-1}\\-\frac{1}{4\times 3-1}&\frac{4}{4\times 3-1}\end{matrix}\right)\left(\begin{matrix}20\\-17\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}&-\frac{1}{11}\\-\frac{1}{11}&\frac{4}{11}\end{matrix}\right)\left(\begin{matrix}20\\-17\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{3}{11}\times 20-\frac{1}{11}\left(-17\right)\\-\frac{1}{11}\times 20+\frac{4}{11}\left(-17\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\-8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=7,y=-8
ამოიღეთ მატრიცის ელემენტები - x და y.
4x+y=20,x+3y=-17
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
4x+y=20,4x+4\times 3y=4\left(-17\right)
იმისათვის, რომ 4x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
4x+y=20,4x+12y=-68
გაამარტივეთ.
4x-4x+y-12y=20+68
გამოაკელით 4x+12y=-68 4x+y=20-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
y-12y=20+68
მიუმატეთ 4x -4x-ს. პირობები 4x და -4x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-11y=20+68
მიუმატეთ y -12y-ს.
-11y=88
მიუმატეთ 20 68-ს.
y=-8
ორივე მხარე გაყავით -11-ზე.
x+3\left(-8\right)=-17
ჩაანაცვლეთ -8-ით y აქ: x+3y=-17. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x-24=-17
გაამრავლეთ 3-ზე -8.
x=7
მიუმატეთ 24 განტოლების ორივე მხარეს.
x=7,y=-8
სისტემა ახლა ამოხსნილია.