მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

4x+5y=2,3x+4y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
4x+5y=2
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
4x=-5y+2
გამოაკელით 5y განტოლების ორივე მხარეს.
x=\frac{1}{4}\left(-5y+2\right)
ორივე მხარე გაყავით 4-ზე.
x=-\frac{5}{4}y+\frac{1}{2}
გაამრავლეთ \frac{1}{4}-ზე -5y+2.
3\left(-\frac{5}{4}y+\frac{1}{2}\right)+4y=1
ჩაანაცვლეთ -\frac{5y}{4}+\frac{1}{2}-ით x მეორე განტოლებაში, 3x+4y=1.
-\frac{15}{4}y+\frac{3}{2}+4y=1
გაამრავლეთ 3-ზე -\frac{5y}{4}+\frac{1}{2}.
\frac{1}{4}y+\frac{3}{2}=1
მიუმატეთ -\frac{15y}{4} 4y-ს.
\frac{1}{4}y=-\frac{1}{2}
გამოაკელით \frac{3}{2} განტოლების ორივე მხარეს.
y=-2
ორივე მხარე გაამრავლეთ 4-ზე.
x=-\frac{5}{4}\left(-2\right)+\frac{1}{2}
ჩაანაცვლეთ -2-ით y აქ: x=-\frac{5}{4}y+\frac{1}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{5+1}{2}
გაამრავლეთ -\frac{5}{4}-ზე -2.
x=3
მიუმატეთ \frac{1}{2} \frac{5}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=3,y=-2
სისტემა ახლა ამოხსნილია.
4x+5y=2,3x+4y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}4&5\\3&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}4&5\\3&4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}4&5\\3&4\end{matrix}\right))\left(\begin{matrix}2\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{4\times 4-5\times 3}&-\frac{5}{4\times 4-5\times 3}\\-\frac{3}{4\times 4-5\times 3}&\frac{4}{4\times 4-5\times 3}\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4&-5\\-3&4\end{matrix}\right)\left(\begin{matrix}2\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\times 2-5\\-3\times 2+4\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\\-2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=3,y=-2
ამოიღეთ მატრიცის ელემენტები - x და y.
4x+5y=2,3x+4y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 4x+3\times 5y=3\times 2,4\times 3x+4\times 4y=4
იმისათვის, რომ 4x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 4-ზე.
12x+15y=6,12x+16y=4
გაამარტივეთ.
12x-12x+15y-16y=6-4
გამოაკელით 12x+16y=4 12x+15y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
15y-16y=6-4
მიუმატეთ 12x -12x-ს. პირობები 12x და -12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-y=6-4
მიუმატეთ 15y -16y-ს.
-y=2
მიუმატეთ 6 -4-ს.
y=-2
ორივე მხარე გაყავით -1-ზე.
3x+4\left(-2\right)=1
ჩაანაცვლეთ -2-ით y აქ: 3x+4y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-8=1
გაამრავლეთ 4-ზე -2.
3x=9
მიუმატეთ 8 განტოლების ორივე მხარეს.
x=3
ორივე მხარე გაყავით 3-ზე.
x=3,y=-2
სისტემა ახლა ამოხსნილია.