მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x-y=8,x+y=10
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-y=8
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=y+8
მიუმატეთ y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(y+8\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{1}{3}y+\frac{8}{3}
გაამრავლეთ \frac{1}{3}-ზე y+8.
\frac{1}{3}y+\frac{8}{3}+y=10
ჩაანაცვლეთ \frac{8+y}{3}-ით x მეორე განტოლებაში, x+y=10.
\frac{4}{3}y+\frac{8}{3}=10
მიუმატეთ \frac{y}{3} y-ს.
\frac{4}{3}y=\frac{22}{3}
გამოაკელით \frac{8}{3} განტოლების ორივე მხარეს.
y=\frac{11}{2}
განტოლების ორივე მხარე გაყავით \frac{4}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{1}{3}\times \frac{11}{2}+\frac{8}{3}
ჩაანაცვლეთ \frac{11}{2}-ით y აქ: x=\frac{1}{3}y+\frac{8}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{11}{6}+\frac{8}{3}
გაამრავლეთ \frac{1}{3}-ზე \frac{11}{2} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{9}{2}
მიუმატეთ \frac{8}{3} \frac{11}{6}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{9}{2},y=\frac{11}{2}
სისტემა ახლა ამოხსნილია.
3x-y=8,x+y=10
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\10\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}3&-1\\1&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-1\\1&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-1\\1&1\end{matrix}\right))\left(\begin{matrix}8\\10\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-\left(-1\right)}&-\frac{-1}{3-\left(-1\right)}\\-\frac{1}{3-\left(-1\right)}&\frac{3}{3-\left(-1\right)}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\-\frac{1}{4}&\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}8\\10\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 8+\frac{1}{4}\times 10\\-\frac{1}{4}\times 8+\frac{3}{4}\times 10\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{9}{2}\\\frac{11}{2}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{9}{2},y=\frac{11}{2}
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-y=8,x+y=10
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-y=8,3x+3y=3\times 10
იმისათვის, რომ 3x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
3x-y=8,3x+3y=30
გაამარტივეთ.
3x-3x-y-3y=8-30
გამოაკელით 3x+3y=30 3x-y=8-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-y-3y=8-30
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-4y=8-30
მიუმატეთ -y -3y-ს.
-4y=-22
მიუმატეთ 8 -30-ს.
y=\frac{11}{2}
ორივე მხარე გაყავით -4-ზე.
x+\frac{11}{2}=10
ჩაანაცვლეთ \frac{11}{2}-ით y აქ: x+y=10. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{9}{2}
გამოაკელით \frac{11}{2} განტოლების ორივე მხარეს.
x=\frac{9}{2},y=\frac{11}{2}
სისტემა ახლა ამოხსნილია.