ამოხსნა x, y-ისთვის
x=8
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
3x-4y=16,2x-3y=10
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-4y=16
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=4y+16
მიუმატეთ 4y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(4y+16\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{4}{3}y+\frac{16}{3}
გაამრავლეთ \frac{1}{3}-ზე 16+4y.
2\left(\frac{4}{3}y+\frac{16}{3}\right)-3y=10
ჩაანაცვლეთ \frac{16+4y}{3}-ით x მეორე განტოლებაში, 2x-3y=10.
\frac{8}{3}y+\frac{32}{3}-3y=10
გაამრავლეთ 2-ზე \frac{16+4y}{3}.
-\frac{1}{3}y+\frac{32}{3}=10
მიუმატეთ \frac{8y}{3} -3y-ს.
-\frac{1}{3}y=-\frac{2}{3}
გამოაკელით \frac{32}{3} განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაამრავლეთ -3-ზე.
x=\frac{4}{3}\times 2+\frac{16}{3}
ჩაანაცვლეთ 2-ით y აქ: x=\frac{4}{3}y+\frac{16}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{8+16}{3}
გაამრავლეთ \frac{4}{3}-ზე 2.
x=8
მიუმატეთ \frac{16}{3} \frac{8}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=8,y=2
სისტემა ახლა ამოხსნილია.
3x-4y=16,2x-3y=10
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}16\\10\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right))\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right))\left(\begin{matrix}16\\10\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-4\\2&-3\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right))\left(\begin{matrix}16\\10\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right))\left(\begin{matrix}16\\10\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{3}{3\left(-3\right)-\left(-4\times 2\right)}&-\frac{-4}{3\left(-3\right)-\left(-4\times 2\right)}\\-\frac{2}{3\left(-3\right)-\left(-4\times 2\right)}&\frac{3}{3\left(-3\right)-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}16\\10\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3&-4\\2&-3\end{matrix}\right)\left(\begin{matrix}16\\10\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}3\times 16-4\times 10\\2\times 16-3\times 10\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=8,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-4y=16,2x-3y=10
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 3x+2\left(-4\right)y=2\times 16,3\times 2x+3\left(-3\right)y=3\times 10
იმისათვის, რომ 3x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
6x-8y=32,6x-9y=30
გაამარტივეთ.
6x-6x-8y+9y=32-30
გამოაკელით 6x-9y=30 6x-8y=32-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-8y+9y=32-30
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
y=32-30
მიუმატეთ -8y 9y-ს.
y=2
მიუმატეთ 32 -30-ს.
2x-3\times 2=10
ჩაანაცვლეთ 2-ით y აქ: 2x-3y=10. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x-6=10
გაამრავლეთ -3-ზე 2.
2x=16
მიუმატეთ 6 განტოლების ორივე მხარეს.
x=8
ორივე მხარე გაყავით 2-ზე.
x=8,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}