მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x-4y=-6,2x+4y=16
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x-4y=-6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=4y-6
მიუმატეთ 4y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(4y-6\right)
ორივე მხარე გაყავით 3-ზე.
x=\frac{4}{3}y-2
გაამრავლეთ \frac{1}{3}-ზე 4y-6.
2\left(\frac{4}{3}y-2\right)+4y=16
ჩაანაცვლეთ \frac{4y}{3}-2-ით x მეორე განტოლებაში, 2x+4y=16.
\frac{8}{3}y-4+4y=16
გაამრავლეთ 2-ზე \frac{4y}{3}-2.
\frac{20}{3}y-4=16
მიუმატეთ \frac{8y}{3} 4y-ს.
\frac{20}{3}y=20
მიუმატეთ 4 განტოლების ორივე მხარეს.
y=3
განტოლების ორივე მხარე გაყავით \frac{20}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{4}{3}\times 3-2
ჩაანაცვლეთ 3-ით y აქ: x=\frac{4}{3}y-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=4-2
გაამრავლეთ \frac{4}{3}-ზე 3.
x=2
მიუმატეთ -2 4-ს.
x=2,y=3
სისტემა ახლა ამოხსნილია.
3x-4y=-6,2x+4y=16
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-6\\16\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}3&-4\\2&4\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&-4\\2&4\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&-4\\2&4\end{matrix}\right))\left(\begin{matrix}-6\\16\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{4}{3\times 4-\left(-4\times 2\right)}&-\frac{-4}{3\times 4-\left(-4\times 2\right)}\\-\frac{2}{3\times 4-\left(-4\times 2\right)}&\frac{3}{3\times 4-\left(-4\times 2\right)}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\-\frac{1}{10}&\frac{3}{20}\end{matrix}\right)\left(\begin{matrix}-6\\16\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}\left(-6\right)+\frac{1}{5}\times 16\\-\frac{1}{10}\left(-6\right)+\frac{3}{20}\times 16\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
3x-4y=-6,2x+4y=16
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 3x+2\left(-4\right)y=2\left(-6\right),3\times 2x+3\times 4y=3\times 16
იმისათვის, რომ 3x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
6x-8y=-12,6x+12y=48
გაამარტივეთ.
6x-6x-8y-12y=-12-48
გამოაკელით 6x+12y=48 6x-8y=-12-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-8y-12y=-12-48
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-20y=-12-48
მიუმატეთ -8y -12y-ს.
-20y=-60
მიუმატეთ -12 -48-ს.
y=3
ორივე მხარე გაყავით -20-ზე.
2x+4\times 3=16
ჩაანაცვლეთ 3-ით y აქ: 2x+4y=16. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x+12=16
გაამრავლეთ 4-ზე 3.
2x=4
გამოაკელით 12 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით 2-ზე.
x=2,y=3
სისტემა ახლა ამოხსნილია.