მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+y=5,7x+y=6
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-y+5
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-y+5\right)
ორივე მხარე გაყავით 3-ზე.
x=-\frac{1}{3}y+\frac{5}{3}
გაამრავლეთ \frac{1}{3}-ზე -y+5.
7\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=6
ჩაანაცვლეთ \frac{-y+5}{3}-ით x მეორე განტოლებაში, 7x+y=6.
-\frac{7}{3}y+\frac{35}{3}+y=6
გაამრავლეთ 7-ზე \frac{-y+5}{3}.
-\frac{4}{3}y+\frac{35}{3}=6
მიუმატეთ -\frac{7y}{3} y-ს.
-\frac{4}{3}y=-\frac{17}{3}
გამოაკელით \frac{35}{3} განტოლების ორივე მხარეს.
y=\frac{17}{4}
განტოლების ორივე მხარე გაყავით -\frac{4}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{3}\times \frac{17}{4}+\frac{5}{3}
ჩაანაცვლეთ \frac{17}{4}-ით y აქ: x=-\frac{1}{3}y+\frac{5}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-\frac{17}{12}+\frac{5}{3}
გაამრავლეთ -\frac{1}{3}-ზე \frac{17}{4} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{1}{4}
მიუმატეთ \frac{5}{3} -\frac{17}{12}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{1}{4},y=\frac{17}{4}
სისტემა ახლა ამოხსნილია.
3x+y=5,7x+y=6
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\6\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}3&1\\7&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&1\\7&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\7&1\end{matrix}\right))\left(\begin{matrix}5\\6\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-7}&-\frac{1}{3-7}\\-\frac{7}{3-7}&\frac{3}{3-7}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}&\frac{1}{4}\\\frac{7}{4}&-\frac{3}{4}\end{matrix}\right)\left(\begin{matrix}5\\6\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{4}\times 5+\frac{1}{4}\times 6\\\frac{7}{4}\times 5-\frac{3}{4}\times 6\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\\\frac{17}{4}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{1}{4},y=\frac{17}{4}
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+y=5,7x+y=6
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-7x+y-y=5-6
გამოაკელით 7x+y=6 3x+y=5-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3x-7x=5-6
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-4x=5-6
მიუმატეთ 3x -7x-ს.
-4x=-1
მიუმატეთ 5 -6-ს.
x=\frac{1}{4}
ორივე მხარე გაყავით -4-ზე.
7\times \frac{1}{4}+y=6
ჩაანაცვლეთ \frac{1}{4}-ით x აქ: 7x+y=6. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
\frac{7}{4}+y=6
გაამრავლეთ 7-ზე \frac{1}{4}.
y=\frac{17}{4}
გამოაკელით \frac{7}{4} განტოლების ორივე მხარეს.
x=\frac{1}{4},y=\frac{17}{4}
სისტემა ახლა ამოხსნილია.