მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+y=5,2x+y=10
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-y+5
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-y+5\right)
ორივე მხარე გაყავით 3-ზე.
x=-\frac{1}{3}y+\frac{5}{3}
გაამრავლეთ \frac{1}{3}-ზე -y+5.
2\left(-\frac{1}{3}y+\frac{5}{3}\right)+y=10
ჩაანაცვლეთ \frac{-y+5}{3}-ით x მეორე განტოლებაში, 2x+y=10.
-\frac{2}{3}y+\frac{10}{3}+y=10
გაამრავლეთ 2-ზე \frac{-y+5}{3}.
\frac{1}{3}y+\frac{10}{3}=10
მიუმატეთ -\frac{2y}{3} y-ს.
\frac{1}{3}y=\frac{20}{3}
გამოაკელით \frac{10}{3} განტოლების ორივე მხარეს.
y=20
ორივე მხარე გაამრავლეთ 3-ზე.
x=-\frac{1}{3}\times 20+\frac{5}{3}
ჩაანაცვლეთ 20-ით y აქ: x=-\frac{1}{3}y+\frac{5}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-20+5}{3}
გაამრავლეთ -\frac{1}{3}-ზე 20.
x=-5
მიუმატეთ \frac{5}{3} -\frac{20}{3}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=-5,y=20
სისტემა ახლა ამოხსნილია.
3x+y=5,2x+y=10
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\10\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}3&1\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&1\\2&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&1\end{matrix}\right))\left(\begin{matrix}5\\10\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{3-2}&-\frac{1}{3-2}\\-\frac{2}{3-2}&\frac{3}{3-2}\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-1\\-2&3\end{matrix}\right)\left(\begin{matrix}5\\10\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-10\\-2\times 5+3\times 10\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-5\\20\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-5,y=20
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+y=5,2x+y=10
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-2x+y-y=5-10
გამოაკელით 2x+y=10 3x+y=5-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3x-2x=5-10
მიუმატეთ y -y-ს. პირობები y და -y გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
x=5-10
მიუმატეთ 3x -2x-ს.
x=-5
მიუმატეთ 5 -10-ს.
2\left(-5\right)+y=10
ჩაანაცვლეთ -5-ით x აქ: 2x+y=10. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ y.
-10+y=10
გაამრავლეთ 2-ზე -5.
y=20
მიუმატეთ 10 განტოლების ორივე მხარეს.
x=-5,y=20
სისტემა ახლა ამოხსნილია.