მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+y=1,2x-y=11
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+y=1
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-y+1
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-y+1\right)
ორივე მხარე გაყავით 3-ზე.
x=-\frac{1}{3}y+\frac{1}{3}
გაამრავლეთ \frac{1}{3}-ზე -y+1.
2\left(-\frac{1}{3}y+\frac{1}{3}\right)-y=11
ჩაანაცვლეთ \frac{-y+1}{3}-ით x მეორე განტოლებაში, 2x-y=11.
-\frac{2}{3}y+\frac{2}{3}-y=11
გაამრავლეთ 2-ზე \frac{-y+1}{3}.
-\frac{5}{3}y+\frac{2}{3}=11
მიუმატეთ -\frac{2y}{3} -y-ს.
-\frac{5}{3}y=\frac{31}{3}
გამოაკელით \frac{2}{3} განტოლების ორივე მხარეს.
y=-\frac{31}{5}
განტოლების ორივე მხარე გაყავით -\frac{5}{3}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{1}{3}\left(-\frac{31}{5}\right)+\frac{1}{3}
ჩაანაცვლეთ -\frac{31}{5}-ით y აქ: x=-\frac{1}{3}y+\frac{1}{3}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{31}{15}+\frac{1}{3}
გაამრავლეთ -\frac{1}{3}-ზე -\frac{31}{5} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=\frac{12}{5}
მიუმატეთ \frac{1}{3} \frac{31}{15}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=\frac{12}{5},y=-\frac{31}{5}
სისტემა ახლა ამოხსნილია.
3x+y=1,2x-y=11
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\11\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}3&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&1\\2&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&1\\2&-1\end{matrix}\right))\left(\begin{matrix}1\\11\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{3\left(-1\right)-2}&-\frac{1}{3\left(-1\right)-2}\\-\frac{2}{3\left(-1\right)-2}&\frac{3}{3\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}&\frac{1}{5}\\\frac{2}{5}&-\frac{3}{5}\end{matrix}\right)\left(\begin{matrix}1\\11\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{5}+\frac{1}{5}\times 11\\\frac{2}{5}-\frac{3}{5}\times 11\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{12}{5}\\-\frac{31}{5}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=\frac{12}{5},y=-\frac{31}{5}
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+y=1,2x-y=11
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2\times 3x+2y=2,3\times 2x+3\left(-1\right)y=3\times 11
იმისათვის, რომ 3x და 2x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 2-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 3-ზე.
6x+2y=2,6x-3y=33
გაამარტივეთ.
6x-6x+2y+3y=2-33
გამოაკელით 6x-3y=33 6x+2y=2-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2y+3y=2-33
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
5y=2-33
მიუმატეთ 2y 3y-ს.
5y=-31
მიუმატეთ 2 -33-ს.
y=-\frac{31}{5}
ორივე მხარე გაყავით 5-ზე.
2x-\left(-\frac{31}{5}\right)=11
ჩაანაცვლეთ -\frac{31}{5}-ით y აქ: 2x-y=11. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=\frac{24}{5}
გამოაკელით \frac{31}{5} განტოლების ორივე მხარეს.
x=\frac{12}{5}
ორივე მხარე გაყავით 2-ზე.
x=\frac{12}{5},y=-\frac{31}{5}
სისტემა ახლა ამოხსნილია.