მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

3x+3y=12,3x+2y=13
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
3x+3y=12
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
3x=-3y+12
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{3}\left(-3y+12\right)
ორივე მხარე გაყავით 3-ზე.
x=-y+4
გაამრავლეთ \frac{1}{3}-ზე -3y+12.
3\left(-y+4\right)+2y=13
ჩაანაცვლეთ -y+4-ით x მეორე განტოლებაში, 3x+2y=13.
-3y+12+2y=13
გაამრავლეთ 3-ზე -y+4.
-y+12=13
მიუმატეთ -3y 2y-ს.
-y=1
გამოაკელით 12 განტოლების ორივე მხარეს.
y=-1
ორივე მხარე გაყავით -1-ზე.
x=-\left(-1\right)+4
ჩაანაცვლეთ -1-ით y აქ: x=-y+4. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=1+4
გაამრავლეთ -1-ზე -1.
x=5
მიუმატეთ 4 1-ს.
x=5,y=-1
სისტემა ახლა ამოხსნილია.
3x+3y=12,3x+2y=13
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}12\\13\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}3&3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}3&3\\3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}3&3\\3&2\end{matrix}\right))\left(\begin{matrix}12\\13\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{3\times 2-3\times 3}&-\frac{3}{3\times 2-3\times 3}\\-\frac{3}{3\times 2-3\times 3}&\frac{3}{3\times 2-3\times 3}\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}&1\\1&-1\end{matrix}\right)\left(\begin{matrix}12\\13\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{3}\times 12+13\\12-13\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=5,y=-1
ამოიღეთ მატრიცის ელემენტები - x და y.
3x+3y=12,3x+2y=13
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3x-3x+3y-2y=12-13
გამოაკელით 3x+2y=13 3x+3y=12-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
3y-2y=12-13
მიუმატეთ 3x -3x-ს. პირობები 3x და -3x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
y=12-13
მიუმატეთ 3y -2y-ს.
y=-1
მიუმატეთ 12 -13-ს.
3x+2\left(-1\right)=13
ჩაანაცვლეთ -1-ით y აქ: 3x+2y=13. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-2=13
გაამრავლეთ 2-ზე -1.
3x=15
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=5
ორივე მხარე გაყავით 3-ზე.
x=5,y=-1
სისტემა ახლა ამოხსნილია.