ამოხსნა x, y-ისთვის
x = -\frac{31}{13} = -2\frac{5}{13} \approx -2.384615385
y = -\frac{64}{13} = -4\frac{12}{13} \approx -4.923076923
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x-3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
2y+3x=-17
განიხილეთ პირველი განტოლება. დაამატეთ 3x ორივე მხარეს.
2x-3y=10,3x+2y=-17
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x-3y=10
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=3y+10
მიუმატეთ 3y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(3y+10\right)
ორივე მხარე გაყავით 2-ზე.
x=\frac{3}{2}y+5
გაამრავლეთ \frac{1}{2}-ზე 3y+10.
3\left(\frac{3}{2}y+5\right)+2y=-17
ჩაანაცვლეთ \frac{3y}{2}+5-ით x მეორე განტოლებაში, 3x+2y=-17.
\frac{9}{2}y+15+2y=-17
გაამრავლეთ 3-ზე \frac{3y}{2}+5.
\frac{13}{2}y+15=-17
მიუმატეთ \frac{9y}{2} 2y-ს.
\frac{13}{2}y=-32
გამოაკელით 15 განტოლების ორივე მხარეს.
y=-\frac{64}{13}
განტოლების ორივე მხარე გაყავით \frac{13}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=\frac{3}{2}\left(-\frac{64}{13}\right)+5
ჩაანაცვლეთ -\frac{64}{13}-ით y აქ: x=\frac{3}{2}y+5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-\frac{96}{13}+5
გაამრავლეთ \frac{3}{2}-ზე -\frac{64}{13} მრიცხველის მრიცხველზე და მნიშვნელის მნიშვნელზე გამრავლების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრებამდე.
x=-\frac{31}{13}
მიუმატეთ 5 -\frac{96}{13}-ს.
x=-\frac{31}{13},y=-\frac{64}{13}
სისტემა ახლა ამოხსნილია.
2x-3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
2y+3x=-17
განიხილეთ პირველი განტოლება. დაამატეთ 3x ორივე მხარეს.
2x-3y=10,3x+2y=-17
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}10\\-17\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}2&-3\\3&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&-3\\3&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&-3\\3&2\end{matrix}\right))\left(\begin{matrix}10\\-17\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-\left(-3\times 3\right)}&-\frac{-3}{2\times 2-\left(-3\times 3\right)}\\-\frac{3}{2\times 2-\left(-3\times 3\right)}&\frac{2}{2\times 2-\left(-3\times 3\right)}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&\frac{3}{13}\\-\frac{3}{13}&\frac{2}{13}\end{matrix}\right)\left(\begin{matrix}10\\-17\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times 10+\frac{3}{13}\left(-17\right)\\-\frac{3}{13}\times 10+\frac{2}{13}\left(-17\right)\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{31}{13}\\-\frac{64}{13}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-\frac{31}{13},y=-\frac{64}{13}
ამოიღეთ მატრიცის ელემენტები - x და y.
2x-3y=10
განიხილეთ პირველი განტოლება. დაამატეთ 10 ორივე მხარეს. თუ რიცხვს მივუმატებთ ნულს, მივიღებთ იმავე რიცხვს.
2y+3x=-17
განიხილეთ პირველი განტოლება. დაამატეთ 3x ორივე მხარეს.
2x-3y=10,3x+2y=-17
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 2x+3\left(-3\right)y=3\times 10,2\times 3x+2\times 2y=2\left(-17\right)
იმისათვის, რომ 2x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
6x-9y=30,6x+4y=-34
გაამარტივეთ.
6x-6x-9y-4y=30+34
გამოაკელით 6x+4y=-34 6x-9y=30-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-9y-4y=30+34
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-13y=30+34
მიუმატეთ -9y -4y-ს.
-13y=64
მიუმატეთ 30 34-ს.
y=-\frac{64}{13}
ორივე მხარე გაყავით -13-ზე.
3x+2\left(-\frac{64}{13}\right)=-17
ჩაანაცვლეთ -\frac{64}{13}-ით y აქ: 3x+2y=-17. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-\frac{128}{13}=-17
გაამრავლეთ 2-ზე -\frac{64}{13}.
3x=-\frac{93}{13}
მიუმატეთ \frac{128}{13} განტოლების ორივე მხარეს.
x=-\frac{31}{13}
ორივე მხარე გაყავით 3-ზე.
x=-\frac{31}{13},y=-\frac{64}{13}
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}