მამრავლი
\left(x-7\right)\left(2x+1\right)
შეფასება
\left(x-7\right)\left(2x+1\right)
დიაგრამა
ვიქტორინა
Polynomial
\left. \begin{array} { l } { 2 x ^ { 2 } - 13 x } \\ { - 7 } \end{array} \right.
გაზიარება
კოპირებულია ბუფერში
a+b=-13 ab=2\left(-7\right)=-14
მამრავლებად დაშალეთ ლოგიკური ფრაზა დაჯგუფებით. ჯერ ლოგიკური ფრაზა უნდა გადაიწეროს, როგორც 2x^{2}+ax+bx-7. a-ისა და b-ის მისაღებად დააყენეთ სისტემა ამოსახსნელად.
1,-14 2,-7
რადგან ab უარყოფითია, a-სა და b-ს აქვთ საპირისპირო ნიშანი. რადგან a+b უარყოფითია, უარყოფით რიცხვს აქვს უფრო მაღალი აბსოლუტური მნიშვნელობა, ვიდრე დადებით რიცხვს. სიაში შეიყვანეთ ყველა ამგვარი მთელი რიცხვის დაწყვილება, რომელთა პასუხია -14.
1-14=-13 2-7=-5
გამოთვალეთ თითოეული დაწყვილების ჯამი.
a=-14 b=1
ამონახსნი არის წყვილი, რომლის ჯამია -13.
\left(2x^{2}-14x\right)+\left(x-7\right)
ხელახლა დაწერეთ 2x^{2}-13x-7, როგორც \left(2x^{2}-14x\right)+\left(x-7\right).
2x\left(x-7\right)+x-7
მამრავლებად დაშალეთ 2x 2x^{2}-14x-ში.
\left(x-7\right)\left(2x+1\right)
გაიტანეთ ფრჩხილებს გარეთ საერთო წევრი x-7 დისტრიბუციული თვისების გამოყენებით.
2x^{2}-13x-7=0
კვადრატული მრავალწევრი შეიძლება მამრავლებად დაიშალოს გარდაქმნით ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right), სადაც x_{1} და x_{2} კვადრატული განტოლების ax^{2}+bx+c=0 ამონახსნებია.
x=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 2\left(-7\right)}}{2\times 2}
ax^{2}+bx+c=0 ფორმის ყველა განტოლება შეიძლება ამოიხსნას კვადრატული ფორმულის გამოყენებით: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. კვადრატული ფორმულა ორ ამონახსნს გვაძლევს: ერთი, როცა ± შეკრებაა და მეორე, როცა გამოკლებაა.
x=\frac{-\left(-13\right)±\sqrt{169-4\times 2\left(-7\right)}}{2\times 2}
აიყვანეთ კვადრატში -13.
x=\frac{-\left(-13\right)±\sqrt{169-8\left(-7\right)}}{2\times 2}
გაამრავლეთ -4-ზე 2.
x=\frac{-\left(-13\right)±\sqrt{169+56}}{2\times 2}
გაამრავლეთ -8-ზე -7.
x=\frac{-\left(-13\right)±\sqrt{225}}{2\times 2}
მიუმატეთ 169 56-ს.
x=\frac{-\left(-13\right)±15}{2\times 2}
აიღეთ 225-ის კვადრატული ფესვი.
x=\frac{13±15}{2\times 2}
-13-ის საპირისპიროა 13.
x=\frac{13±15}{4}
გაამრავლეთ 2-ზე 2.
x=\frac{28}{4}
ახლა ამოხსენით განტოლება x=\frac{13±15}{4} როცა ± პლიუსია. მიუმატეთ 13 15-ს.
x=7
გაყავით 28 4-ზე.
x=-\frac{2}{4}
ახლა ამოხსენით განტოლება x=\frac{13±15}{4} როცა ± მინუსია. გამოაკელით 15 13-ს.
x=-\frac{1}{2}
შეამცირეთ წილადი \frac{-2}{4} უმცირეს წევრებამდე გამოკლებით და 2-ის შეკვეცით.
2x^{2}-13x-7=2\left(x-7\right)\left(x-\left(-\frac{1}{2}\right)\right)
დაშალეთ მამრავლებად გამოსახულება ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) გამოყენებით. ჩასვით 7 x_{1}-ისთვის და -\frac{1}{2} x_{2}-ისთვის.
2x^{2}-13x-7=2\left(x-7\right)\left(x+\frac{1}{2}\right)
გაამარტივეთ გამოსახულება p-\left(-q\right) p+q-მდე.
2x^{2}-13x-7=2\left(x-7\right)\times \frac{2x+1}{2}
მიუმატეთ \frac{1}{2} x-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
2x^{2}-13x-7=\left(x-7\right)\left(2x+1\right)
შეკვეცეთ უდიდეს საერთო გამყოფზე 2 2 და 2.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}