ამოხსნა x, y-ისთვის
x=2
y=3
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+y=7,4x-y=5
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=7
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+7
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+7\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+\frac{7}{2}
გაამრავლეთ \frac{1}{2}-ზე -y+7.
4\left(-\frac{1}{2}y+\frac{7}{2}\right)-y=5
ჩაანაცვლეთ \frac{-y+7}{2}-ით x მეორე განტოლებაში, 4x-y=5.
-2y+14-y=5
გაამრავლეთ 4-ზე \frac{-y+7}{2}.
-3y+14=5
მიუმატეთ -2y -y-ს.
-3y=-9
გამოაკელით 14 განტოლების ორივე მხარეს.
y=3
ორივე მხარე გაყავით -3-ზე.
x=-\frac{1}{2}\times 3+\frac{7}{2}
ჩაანაცვლეთ 3-ით y აქ: x=-\frac{1}{2}y+\frac{7}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-3+7}{2}
გაამრავლეთ -\frac{1}{2}-ზე 3.
x=2
მიუმატეთ \frac{7}{2} -\frac{3}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=2,y=3
სისტემა ახლა ამოხსნილია.
2x+y=7,4x-y=5
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\5\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}2&1\\4&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\4&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\4&-1\end{matrix}\right))\left(\begin{matrix}7\\5\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-4}&-\frac{1}{2\left(-1\right)-4}\\-\frac{4}{2\left(-1\right)-4}&\frac{2}{2\left(-1\right)-4}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}&\frac{1}{6}\\\frac{2}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}7\\5\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{6}\times 7+\frac{1}{6}\times 5\\\frac{2}{3}\times 7-\frac{1}{3}\times 5\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=7,4x-y=5
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
4\times 2x+4y=4\times 7,2\times 4x+2\left(-1\right)y=2\times 5
იმისათვის, რომ 2x და 4x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 4-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
8x+4y=28,8x-2y=10
გაამარტივეთ.
8x-8x+4y+2y=28-10
გამოაკელით 8x-2y=10 8x+4y=28-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
4y+2y=28-10
მიუმატეთ 8x -8x-ს. პირობები 8x და -8x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
6y=28-10
მიუმატეთ 4y 2y-ს.
6y=18
მიუმატეთ 28 -10-ს.
y=3
ორივე მხარე გაყავით 6-ზე.
4x-3=5
ჩაანაცვლეთ 3-ით y აქ: 4x-y=5. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
4x=8
მიუმატეთ 3 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით 4-ზე.
x=2,y=3
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}