ამოხსნა x, y-ისთვის
x=2
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+y=6,2x-y=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=6
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+6
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+6\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+3
გაამრავლეთ \frac{1}{2}-ზე -y+6.
2\left(-\frac{1}{2}y+3\right)-y=2
ჩაანაცვლეთ -\frac{y}{2}+3-ით x მეორე განტოლებაში, 2x-y=2.
-y+6-y=2
გაამრავლეთ 2-ზე -\frac{y}{2}+3.
-2y+6=2
მიუმატეთ -y -y-ს.
-2y=-4
გამოაკელით 6 განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაყავით -2-ზე.
x=-\frac{1}{2}\times 2+3
ჩაანაცვლეთ 2-ით y აქ: x=-\frac{1}{2}y+3. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-1+3
გაამრავლეთ -\frac{1}{2}-ზე 2.
x=2
მიუმატეთ 3 -1-ს.
x=2,y=2
სისტემა ახლა ამოხსნილია.
2x+y=6,2x-y=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}2&1\\2&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\2&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\2&-1\end{matrix}\right))\left(\begin{matrix}6\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{2\left(-1\right)-2}&-\frac{1}{2\left(-1\right)-2}\\-\frac{2}{2\left(-1\right)-2}&\frac{2}{2\left(-1\right)-2}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}&\frac{1}{4}\\\frac{1}{2}&-\frac{1}{2}\end{matrix}\right)\left(\begin{matrix}6\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{4}\times 6+\frac{1}{4}\times 2\\\frac{1}{2}\times 6-\frac{1}{2}\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}2\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=2,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=6,2x-y=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x-2x+y+y=6-2
გამოაკელით 2x-y=2 2x+y=6-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
y+y=6-2
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
2y=6-2
მიუმატეთ y y-ს.
2y=4
მიუმატეთ 6 -2-ს.
y=2
ორივე მხარე გაყავით 2-ზე.
2x-2=2
ჩაანაცვლეთ 2-ით y აქ: 2x-y=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=4
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=2
ორივე მხარე გაყავით 2-ზე.
x=2,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}