მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x+y=5,6x+6y=24
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+y=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-y+5
გამოაკელით y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-y+5\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{1}{2}y+\frac{5}{2}
გაამრავლეთ \frac{1}{2}-ზე -y+5.
6\left(-\frac{1}{2}y+\frac{5}{2}\right)+6y=24
ჩაანაცვლეთ \frac{-y+5}{2}-ით x მეორე განტოლებაში, 6x+6y=24.
-3y+15+6y=24
გაამრავლეთ 6-ზე \frac{-y+5}{2}.
3y+15=24
მიუმატეთ -3y 6y-ს.
3y=9
გამოაკელით 15 განტოლების ორივე მხარეს.
y=3
ორივე მხარე გაყავით 3-ზე.
x=-\frac{1}{2}\times 3+\frac{5}{2}
ჩაანაცვლეთ 3-ით y აქ: x=-\frac{1}{2}y+\frac{5}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-3+5}{2}
გაამრავლეთ -\frac{1}{2}-ზე 3.
x=1
მიუმატეთ \frac{5}{2} -\frac{3}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=1,y=3
სისტემა ახლა ამოხსნილია.
2x+y=5,6x+6y=24
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\24\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}2&1\\6&6\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\6&6\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\6&6\end{matrix}\right))\left(\begin{matrix}5\\24\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{6}{2\times 6-6}&-\frac{1}{2\times 6-6}\\-\frac{6}{2\times 6-6}&\frac{2}{2\times 6-6}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1&-\frac{1}{6}\\-1&\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}5\\24\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5-\frac{1}{6}\times 24\\-5+\frac{1}{3}\times 24\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}1\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=1,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+y=5,6x+6y=24
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
6\times 2x+6y=6\times 5,2\times 6x+2\times 6y=2\times 24
იმისათვის, რომ 2x და 6x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 6-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
12x+6y=30,12x+12y=48
გაამარტივეთ.
12x-12x+6y-12y=30-48
გამოაკელით 12x+12y=48 12x+6y=30-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
6y-12y=30-48
მიუმატეთ 12x -12x-ს. პირობები 12x და -12x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-6y=30-48
მიუმატეთ 6y -12y-ს.
-6y=-18
მიუმატეთ 30 -48-ს.
y=3
ორივე მხარე გაყავით -6-ზე.
6x+6\times 3=24
ჩაანაცვლეთ 3-ით y აქ: 6x+6y=24. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
6x+18=24
გაამრავლეთ 6-ზე 3.
6x=6
გამოაკელით 18 განტოლების ორივე მხარეს.
x=1
ორივე მხარე გაყავით 6-ზე.
x=1,y=3
სისტემა ახლა ამოხსნილია.