ამოხსნა x, y-ისთვის
x=5
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
2x+5y=20,3x-2y=11
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+5y=20
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-5y+20
გამოაკელით 5y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-5y+20\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{5}{2}y+10
გაამრავლეთ \frac{1}{2}-ზე -5y+20.
3\left(-\frac{5}{2}y+10\right)-2y=11
ჩაანაცვლეთ -\frac{5y}{2}+10-ით x მეორე განტოლებაში, 3x-2y=11.
-\frac{15}{2}y+30-2y=11
გაამრავლეთ 3-ზე -\frac{5y}{2}+10.
-\frac{19}{2}y+30=11
მიუმატეთ -\frac{15y}{2} -2y-ს.
-\frac{19}{2}y=-19
გამოაკელით 30 განტოლების ორივე მხარეს.
y=2
განტოლების ორივე მხარე გაყავით -\frac{19}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{5}{2}\times 2+10
ჩაანაცვლეთ 2-ით y აქ: x=-\frac{5}{2}y+10. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-5+10
გაამრავლეთ -\frac{5}{2}-ზე 2.
x=5
მიუმატეთ 10 -5-ს.
x=5,y=2
სისტემა ახლა ამოხსნილია.
2x+5y=20,3x-2y=11
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}20\\11\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}2&5\\3&-2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&5\\3&-2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&5\\3&-2\end{matrix}\right))\left(\begin{matrix}20\\11\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{2\left(-2\right)-5\times 3}&-\frac{5}{2\left(-2\right)-5\times 3}\\-\frac{3}{2\left(-2\right)-5\times 3}&\frac{2}{2\left(-2\right)-5\times 3}\end{matrix}\right)\left(\begin{matrix}20\\11\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}&\frac{5}{19}\\\frac{3}{19}&-\frac{2}{19}\end{matrix}\right)\left(\begin{matrix}20\\11\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{19}\times 20+\frac{5}{19}\times 11\\\frac{3}{19}\times 20-\frac{2}{19}\times 11\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=5,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+5y=20,3x-2y=11
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
3\times 2x+3\times 5y=3\times 20,2\times 3x+2\left(-2\right)y=2\times 11
იმისათვის, რომ 2x და 3x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 3-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
6x+15y=60,6x-4y=22
გაამარტივეთ.
6x-6x+15y+4y=60-22
გამოაკელით 6x-4y=22 6x+15y=60-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
15y+4y=60-22
მიუმატეთ 6x -6x-ს. პირობები 6x და -6x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
19y=60-22
მიუმატეთ 15y 4y-ს.
19y=38
მიუმატეთ 60 -22-ს.
y=2
ორივე მხარე გაყავით 19-ზე.
3x-2\times 2=11
ჩაანაცვლეთ 2-ით y აქ: 3x-2y=11. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
3x-4=11
გაამრავლეთ -2-ზე 2.
3x=15
მიუმატეთ 4 განტოლების ორივე მხარეს.
x=5
ორივე მხარე გაყავით 3-ზე.
x=5,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}