მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x+4y=-4,2x+y=8
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+4y=-4
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-4y-4
გამოაკელით 4y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-4y-4\right)
ორივე მხარე გაყავით 2-ზე.
x=-2y-2
გაამრავლეთ \frac{1}{2}-ზე -4y-4.
2\left(-2y-2\right)+y=8
ჩაანაცვლეთ -2y-2-ით x მეორე განტოლებაში, 2x+y=8.
-4y-4+y=8
გაამრავლეთ 2-ზე -2y-2.
-3y-4=8
მიუმატეთ -4y y-ს.
-3y=12
მიუმატეთ 4 განტოლების ორივე მხარეს.
y=-4
ორივე მხარე გაყავით -3-ზე.
x=-2\left(-4\right)-2
ჩაანაცვლეთ -4-ით y აქ: x=-2y-2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8-2
გაამრავლეთ -2-ზე -4.
x=6
მიუმატეთ -2 8-ს.
x=6,y=-4
სისტემა ახლა ამოხსნილია.
2x+4y=-4,2x+y=8
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-4\\8\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}2&4\\2&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&4\\2&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\2&1\end{matrix}\right))\left(\begin{matrix}-4\\8\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-4\times 2}&-\frac{4}{2-4\times 2}\\-\frac{2}{2-4\times 2}&\frac{2}{2-4\times 2}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}&\frac{2}{3}\\\frac{1}{3}&-\frac{1}{3}\end{matrix}\right)\left(\begin{matrix}-4\\8\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{6}\left(-4\right)+\frac{2}{3}\times 8\\\frac{1}{3}\left(-4\right)-\frac{1}{3}\times 8\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}6\\-4\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=6,y=-4
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+4y=-4,2x+y=8
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2x-2x+4y-y=-4-8
გამოაკელით 2x+y=8 2x+4y=-4-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
4y-y=-4-8
მიუმატეთ 2x -2x-ს. პირობები 2x და -2x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
3y=-4-8
მიუმატეთ 4y -y-ს.
3y=-12
მიუმატეთ -4 -8-ს.
y=-4
ორივე მხარე გაყავით 3-ზე.
2x-4=8
ჩაანაცვლეთ -4-ით y აქ: 2x+y=8. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
2x=12
მიუმატეთ 4 განტოლების ორივე მხარეს.
x=6
ორივე მხარე გაყავით 2-ზე.
x=6,y=-4
სისტემა ახლა ამოხსნილია.