მთავარ კონტენტზე გადასვლა
ამოხსნა x, y-ისთვის
Tick mark Image
დიაგრამა

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2x+3y=7,5x+2y=1
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2x+3y=7
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2x=-3y+7
გამოაკელით 3y განტოლების ორივე მხარეს.
x=\frac{1}{2}\left(-3y+7\right)
ორივე მხარე გაყავით 2-ზე.
x=-\frac{3}{2}y+\frac{7}{2}
გაამრავლეთ \frac{1}{2}-ზე -3y+7.
5\left(-\frac{3}{2}y+\frac{7}{2}\right)+2y=1
ჩაანაცვლეთ \frac{-3y+7}{2}-ით x მეორე განტოლებაში, 5x+2y=1.
-\frac{15}{2}y+\frac{35}{2}+2y=1
გაამრავლეთ 5-ზე \frac{-3y+7}{2}.
-\frac{11}{2}y+\frac{35}{2}=1
მიუმატეთ -\frac{15y}{2} 2y-ს.
-\frac{11}{2}y=-\frac{33}{2}
გამოაკელით \frac{35}{2} განტოლების ორივე მხარეს.
y=3
განტოლების ორივე მხარე გაყავით -\frac{11}{2}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{3}{2}\times 3+\frac{7}{2}
ჩაანაცვლეთ 3-ით y აქ: x=-\frac{3}{2}y+\frac{7}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{-9+7}{2}
გაამრავლეთ -\frac{3}{2}-ზე 3.
x=-1
მიუმატეთ \frac{7}{2} -\frac{9}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=-1,y=3
სისტემა ახლა ამოხსნილია.
2x+3y=7,5x+2y=1
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}7\\1\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}2&3\\5&2\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&3\\5&2\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}2&3\\5&2\end{matrix}\right))\left(\begin{matrix}7\\1\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{2\times 2-3\times 5}&-\frac{3}{2\times 2-3\times 5}\\-\frac{5}{2\times 2-3\times 5}&\frac{2}{2\times 2-3\times 5}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}&\frac{3}{11}\\\frac{5}{11}&-\frac{2}{11}\end{matrix}\right)\left(\begin{matrix}7\\1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{2}{11}\times 7+\frac{3}{11}\\\frac{5}{11}\times 7-\frac{2}{11}\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-1\\3\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=-1,y=3
ამოიღეთ მატრიცის ელემენტები - x და y.
2x+3y=7,5x+2y=1
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
5\times 2x+5\times 3y=5\times 7,2\times 5x+2\times 2y=2
იმისათვის, რომ 2x და 5x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 5-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
10x+15y=35,10x+4y=2
გაამარტივეთ.
10x-10x+15y-4y=35-2
გამოაკელით 10x+4y=2 10x+15y=35-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
15y-4y=35-2
მიუმატეთ 10x -10x-ს. პირობები 10x და -10x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
11y=35-2
მიუმატეთ 15y -4y-ს.
11y=33
მიუმატეთ 35 -2-ს.
y=3
ორივე მხარე გაყავით 11-ზე.
5x+2\times 3=1
ჩაანაცვლეთ 3-ით y აქ: 5x+2y=1. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
5x+6=1
გაამრავლეთ 2-ზე 3.
5x=-5
გამოაკელით 6 განტოლების ორივე მხარეს.
x=-1
ორივე მხარე გაყავით 5-ზე.
x=-1,y=3
სისტემა ახლა ამოხსნილია.