მთავარ კონტენტზე გადასვლა
ამოხსნა a, b-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2a+b=5,a+b=2
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2a+b=5
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი a-ისთვის, a-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2a=-b+5
გამოაკელით b განტოლების ორივე მხარეს.
a=\frac{1}{2}\left(-b+5\right)
ორივე მხარე გაყავით 2-ზე.
a=-\frac{1}{2}b+\frac{5}{2}
გაამრავლეთ \frac{1}{2}-ზე -b+5.
-\frac{1}{2}b+\frac{5}{2}+b=2
ჩაანაცვლეთ \frac{-b+5}{2}-ით a მეორე განტოლებაში, a+b=2.
\frac{1}{2}b+\frac{5}{2}=2
მიუმატეთ -\frac{b}{2} b-ს.
\frac{1}{2}b=-\frac{1}{2}
გამოაკელით \frac{5}{2} განტოლების ორივე მხარეს.
b=-1
ორივე მხარე გაამრავლეთ 2-ზე.
a=-\frac{1}{2}\left(-1\right)+\frac{5}{2}
ჩაანაცვლეთ -1-ით b აქ: a=-\frac{1}{2}b+\frac{5}{2}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ a.
a=\frac{1+5}{2}
გაამრავლეთ -\frac{1}{2}-ზე -1.
a=3
მიუმატეთ \frac{5}{2} \frac{1}{2}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
a=3,b=-1
სისტემა ახლა ამოხსნილია.
2a+b=5,a+b=2
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5\\2\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}2&1\\1&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&1\\1&1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}a\\b\end{matrix}\right)=inverse(\left(\begin{matrix}2&1\\1&1\end{matrix}\right))\left(\begin{matrix}5\\2\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}\frac{1}{2-1}&-\frac{1}{2-1}\\-\frac{1}{2-1}&\frac{2}{2-1}\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}1&-1\\-1&2\end{matrix}\right)\left(\begin{matrix}5\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}5-2\\-5+2\times 2\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}a\\b\end{matrix}\right)=\left(\begin{matrix}3\\-1\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
a=3,b=-1
ამოიღეთ მატრიცის ელემენტები - a და b.
2a+b=5,a+b=2
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
2a-a+b-b=5-2
გამოაკელით a+b=2 2a+b=5-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
2a-a=5-2
მიუმატეთ b -b-ს. პირობები b და -b გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
a=5-2
მიუმატეთ 2a -a-ს.
a=3
მიუმატეთ 5 -2-ს.
3+b=2
ჩაანაცვლეთ 3-ით a აქ: a+b=2. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ b.
b=-1
გამოაკელით 3 განტოლების ორივე მხარეს.
a=3,b=-1
სისტემა ახლა ამოხსნილია.