მთავარ კონტენტზე გადასვლა
ამოხსნა X, Y-ისთვის
Tick mark Image

მსგავსი პრობლემები ვებ – ძიებიდან

გაზიარება

2X+4Y=\frac{1}{2}+2
განიხილეთ პირველი განტოლება. დაამატეთ 2 ორივე მხარეს.
2X+4Y=\frac{5}{2}
შეკრიბეთ \frac{1}{2} და 2, რათა მიიღოთ \frac{5}{2}.
8Y-4=9\left(X+1\right)-4
განიხილეთ პირველი განტოლება. გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 8 Y-\frac{1}{2}-ზე.
8Y-4=9X+9-4
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 9 X+1-ზე.
8Y-4=9X+5
გამოაკელით 4 9-ს 5-ის მისაღებად.
8Y-4-9X=5
გამოაკელით 9X ორივე მხარეს.
8Y-9X=5+4
დაამატეთ 4 ორივე მხარეს.
8Y-9X=9
შეკრიბეთ 5 და 4, რათა მიიღოთ 9.
2X+4Y=\frac{5}{2},-9X+8Y=9
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
2X+4Y=\frac{5}{2}
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი X-ისთვის, X-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
2X=-4Y+\frac{5}{2}
გამოაკელით 4Y განტოლების ორივე მხარეს.
X=\frac{1}{2}\left(-4Y+\frac{5}{2}\right)
ორივე მხარე გაყავით 2-ზე.
X=-2Y+\frac{5}{4}
გაამრავლეთ \frac{1}{2}-ზე -4Y+\frac{5}{2}.
-9\left(-2Y+\frac{5}{4}\right)+8Y=9
ჩაანაცვლეთ -2Y+\frac{5}{4}-ით X მეორე განტოლებაში, -9X+8Y=9.
18Y-\frac{45}{4}+8Y=9
გაამრავლეთ -9-ზე -2Y+\frac{5}{4}.
26Y-\frac{45}{4}=9
მიუმატეთ 18Y 8Y-ს.
26Y=\frac{81}{4}
მიუმატეთ \frac{45}{4} განტოლების ორივე მხარეს.
Y=\frac{81}{104}
ორივე მხარე გაყავით 26-ზე.
X=-2\times \frac{81}{104}+\frac{5}{4}
ჩაანაცვლეთ \frac{81}{104}-ით Y აქ: X=-2Y+\frac{5}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ X.
X=-\frac{81}{52}+\frac{5}{4}
გაამრავლეთ -2-ზე \frac{81}{104}.
X=-\frac{4}{13}
მიუმატეთ \frac{5}{4} -\frac{81}{52}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
X=-\frac{4}{13},Y=\frac{81}{104}
სისტემა ახლა ამოხსნილია.
2X+4Y=\frac{1}{2}+2
განიხილეთ პირველი განტოლება. დაამატეთ 2 ორივე მხარეს.
2X+4Y=\frac{5}{2}
შეკრიბეთ \frac{1}{2} და 2, რათა მიიღოთ \frac{5}{2}.
8Y-4=9\left(X+1\right)-4
განიხილეთ პირველი განტოლება. გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 8 Y-\frac{1}{2}-ზე.
8Y-4=9X+9-4
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 9 X+1-ზე.
8Y-4=9X+5
გამოაკელით 4 9-ს 5-ის მისაღებად.
8Y-4-9X=5
გამოაკელით 9X ორივე მხარეს.
8Y-9X=5+4
დაამატეთ 4 ორივე მხარეს.
8Y-9X=9
შეკრიბეთ 5 და 4, რათა მიიღოთ 9.
2X+4Y=\frac{5}{2},-9X+8Y=9
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}2&4\\-9&8\end{matrix}\right)\left(\begin{matrix}X\\Y\end{matrix}\right)=\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}2&4\\-9&8\end{matrix}\right)\left(\begin{matrix}X\\Y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}2&4\\-9&8\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}X\\Y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}X\\Y\end{matrix}\right)=inverse(\left(\begin{matrix}2&4\\-9&8\end{matrix}\right))\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}X\\Y\end{matrix}\right)=\left(\begin{matrix}\frac{8}{2\times 8-4\left(-9\right)}&-\frac{4}{2\times 8-4\left(-9\right)}\\-\frac{-9}{2\times 8-4\left(-9\right)}&\frac{2}{2\times 8-4\left(-9\right)}\end{matrix}\right)\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}X\\Y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}&-\frac{1}{13}\\\frac{9}{52}&\frac{1}{26}\end{matrix}\right)\left(\begin{matrix}\frac{5}{2}\\9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}X\\Y\end{matrix}\right)=\left(\begin{matrix}\frac{2}{13}\times \frac{5}{2}-\frac{1}{13}\times 9\\\frac{9}{52}\times \frac{5}{2}+\frac{1}{26}\times 9\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}X\\Y\end{matrix}\right)=\left(\begin{matrix}-\frac{4}{13}\\\frac{81}{104}\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
X=-\frac{4}{13},Y=\frac{81}{104}
ამოიღეთ მატრიცის ელემენტები - X და Y.
2X+4Y=\frac{1}{2}+2
განიხილეთ პირველი განტოლება. დაამატეთ 2 ორივე მხარეს.
2X+4Y=\frac{5}{2}
შეკრიბეთ \frac{1}{2} და 2, რათა მიიღოთ \frac{5}{2}.
8Y-4=9\left(X+1\right)-4
განიხილეთ პირველი განტოლება. გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 8 Y-\frac{1}{2}-ზე.
8Y-4=9X+9-4
გამოიყენეთ დისტრიბუციული თვისება, რათა გაამრავლოთ 9 X+1-ზე.
8Y-4=9X+5
გამოაკელით 4 9-ს 5-ის მისაღებად.
8Y-4-9X=5
გამოაკელით 9X ორივე მხარეს.
8Y-9X=5+4
დაამატეთ 4 ორივე მხარეს.
8Y-9X=9
შეკრიბეთ 5 და 4, რათა მიიღოთ 9.
2X+4Y=\frac{5}{2},-9X+8Y=9
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-9\times 2X-9\times 4Y=-9\times \frac{5}{2},2\left(-9\right)X+2\times 8Y=2\times 9
იმისათვის, რომ 2X და -9X ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს -9-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს 2-ზე.
-18X-36Y=-\frac{45}{2},-18X+16Y=18
გაამარტივეთ.
-18X+18X-36Y-16Y=-\frac{45}{2}-18
გამოაკელით -18X+16Y=18 -18X-36Y=-\frac{45}{2}-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-36Y-16Y=-\frac{45}{2}-18
მიუმატეთ -18X 18X-ს. პირობები -18X და 18X გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-52Y=-\frac{45}{2}-18
მიუმატეთ -36Y -16Y-ს.
-52Y=-\frac{81}{2}
მიუმატეთ -\frac{45}{2} -18-ს.
Y=\frac{81}{104}
ორივე მხარე გაყავით -52-ზე.
-9X+8\times \frac{81}{104}=9
ჩაანაცვლეთ \frac{81}{104}-ით Y აქ: -9X+8Y=9. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ X.
-9X+\frac{81}{13}=9
გაამრავლეთ 8-ზე \frac{81}{104}.
-9X=\frac{36}{13}
გამოაკელით \frac{81}{13} განტოლების ორივე მხარეს.
X=-\frac{4}{13}
ორივე მხარე გაყავით -9-ზე.
X=-\frac{4}{13},Y=\frac{81}{104}
სისტემა ახლა ამოხსნილია.