ამოხსნა x, y-ისთვის
x=4
y=2
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
-x-6y=-16,5x-y=18
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-x-6y=-16
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-x=6y-16
მიუმატეთ 6y განტოლების ორივე მხარეს.
x=-\left(6y-16\right)
ორივე მხარე გაყავით -1-ზე.
x=-6y+16
გაამრავლეთ -1-ზე 6y-16.
5\left(-6y+16\right)-y=18
ჩაანაცვლეთ -6y+16-ით x მეორე განტოლებაში, 5x-y=18.
-30y+80-y=18
გაამრავლეთ 5-ზე -6y+16.
-31y+80=18
მიუმატეთ -30y -y-ს.
-31y=-62
გამოაკელით 80 განტოლების ორივე მხარეს.
y=2
ორივე მხარე გაყავით -31-ზე.
x=-6\times 2+16
ჩაანაცვლეთ 2-ით y აქ: x=-6y+16. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=-12+16
გაამრავლეთ -6-ზე 2.
x=4
მიუმატეთ 16 -12-ს.
x=4,y=2
სისტემა ახლა ამოხსნილია.
-x-6y=-16,5x-y=18
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-16\\18\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-1&-6\\5&-1\end{matrix}\right))\left(\begin{matrix}-16\\18\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{-6}{-\left(-1\right)-\left(-6\times 5\right)}\\-\frac{5}{-\left(-1\right)-\left(-6\times 5\right)}&-\frac{1}{-\left(-1\right)-\left(-6\times 5\right)}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}&\frac{6}{31}\\-\frac{5}{31}&-\frac{1}{31}\end{matrix}\right)\left(\begin{matrix}-16\\18\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{31}\left(-16\right)+\frac{6}{31}\times 18\\-\frac{5}{31}\left(-16\right)-\frac{1}{31}\times 18\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}4\\2\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=4,y=2
ამოიღეთ მატრიცის ელემენტები - x და y.
-x-6y=-16,5x-y=18
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
5\left(-1\right)x+5\left(-6\right)y=5\left(-16\right),-5x-\left(-y\right)=-18
იმისათვის, რომ -x და 5x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 5-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -1-ზე.
-5x-30y=-80,-5x+y=-18
გაამარტივეთ.
-5x+5x-30y-y=-80+18
გამოაკელით -5x+y=-18 -5x-30y=-80-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-30y-y=-80+18
მიუმატეთ -5x 5x-ს. პირობები -5x და 5x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-31y=-80+18
მიუმატეთ -30y -y-ს.
-31y=-62
მიუმატეთ -80 18-ს.
y=2
ორივე მხარე გაყავით -31-ზე.
5x-2=18
ჩაანაცვლეთ 2-ით y აქ: 5x-y=18. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
5x=20
მიუმატეთ 2 განტოლების ორივე მხარეს.
x=4
ორივე მხარე გაყავით 5-ზე.
x=4,y=2
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}