ამოხსნა x, y-ისთვის
x=8
y=-9
დიაგრამა
გაზიარება
კოპირებულია ბუფერში
-8x-6y=-10,x-y=17
განტოლებების წყვილის ამოსახსნელად ჩანაცვლების გამოყენების გზით, ჯერ ამოხსენით ერთ-ერთი განტოლება ერთ-ერთი ცვლადისთვის. შემდეგ ჩაანაცვლეთ შედეგი ამ ცვლადისთვის მეორე განტოლებაში.
-8x-6y=-10
აირჩიეთ ერთ-ერთი განტოლება და ამოხსენით იგი x-ისთვის, x-ის იზოლირებით ტოლობის ნიშნის მარცხენა მხარეს.
-8x=6y-10
მიუმატეთ 6y განტოლების ორივე მხარეს.
x=-\frac{1}{8}\left(6y-10\right)
ორივე მხარე გაყავით -8-ზე.
x=-\frac{3}{4}y+\frac{5}{4}
გაამრავლეთ -\frac{1}{8}-ზე 6y-10.
-\frac{3}{4}y+\frac{5}{4}-y=17
ჩაანაცვლეთ \frac{-3y+5}{4}-ით x მეორე განტოლებაში, x-y=17.
-\frac{7}{4}y+\frac{5}{4}=17
მიუმატეთ -\frac{3y}{4} -y-ს.
-\frac{7}{4}y=\frac{63}{4}
გამოაკელით \frac{5}{4} განტოლების ორივე მხარეს.
y=-9
განტოლების ორივე მხარე გაყავით -\frac{7}{4}-ზე, რაც იგივეა, რაც ორივე მხარის გამრავლება წილადის შექცეულ სიდიდეზე.
x=-\frac{3}{4}\left(-9\right)+\frac{5}{4}
ჩაანაცვლეთ -9-ით y აქ: x=-\frac{3}{4}y+\frac{5}{4}. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=\frac{27+5}{4}
გაამრავლეთ -\frac{3}{4}-ზე -9.
x=8
მიუმატეთ \frac{5}{4} \frac{27}{4}-ს საერთო მნიშვნელის გამოთვლის და მრიცხველების შეკრების გზით. შემდეგ, თუ შესაძლებელია, შეკვეცეთ წილადი უმცირეს წევრამდე.
x=8,y=-9
სისტემა ახლა ამოხსნილია.
-8x-6y=-10,x-y=17
გადაიყვანეთ განტოლებები სტანდარტულ ფორმაში და შემდეგ გამოიყენეთ მატრიცები განტოლებების სისტემის ამოსახსნელად.
\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-10\\17\end{matrix}\right)
ჩაწერეთ განტოლებები მატრიცის ფორმით.
inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
მარცხენა განტოლების გამრავლება \left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right)-ის საპირისპირო მატრიცაზე.
\left(\begin{matrix}1&0\\0&1\end{matrix}\right)\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
მატრიცის და მისი საპირისპიროს ნამრავლი არის იდენტურობის მატრიცა.
\left(\begin{matrix}x\\y\end{matrix}\right)=inverse(\left(\begin{matrix}-8&-6\\1&-1\end{matrix}\right))\left(\begin{matrix}-10\\17\end{matrix}\right)
ტოლობის ნიშნის მარცხენა მხარეს მატრიცების გამრავლება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{-6}{-8\left(-1\right)-\left(-6\right)}\\-\frac{1}{-8\left(-1\right)-\left(-6\right)}&-\frac{8}{-8\left(-1\right)-\left(-6\right)}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
2\times 2 მატრიცისთვის \left(\begin{matrix}a&b\\c&d\end{matrix}\right), შექცეული მატრიცა არის \left(\begin{matrix}\frac{d}{ad-bc}&\frac{-b}{ad-bc}\\\frac{-c}{ad-bc}&\frac{a}{ad-bc}\end{matrix}\right), ამიტომ შესაძლებელია მატრიცული განტოლების გადაწერა მატრიცის გამრავლების პრობლემის სახით.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}&\frac{3}{7}\\-\frac{1}{14}&-\frac{4}{7}\end{matrix}\right)\left(\begin{matrix}-10\\17\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}-\frac{1}{14}\left(-10\right)+\frac{3}{7}\times 17\\-\frac{1}{14}\left(-10\right)-\frac{4}{7}\times 17\end{matrix}\right)
გადაამრავლეთ მატრიცები.
\left(\begin{matrix}x\\y\end{matrix}\right)=\left(\begin{matrix}8\\-9\end{matrix}\right)
შეასრულეთ არითმეტიკული მოქმედება.
x=8,y=-9
ამოიღეთ მატრიცის ელემენტები - x და y.
-8x-6y=-10,x-y=17
გამორიცხვის მეთოდით ამოსახსნელად, ერთ-ერთი ცვლადის კოეფიციენტები ორივე განტოლებაში უნდა იყოს ერთმანეთის ტოლი, რათა ცვლადი გაბათილდეს ერთი განტოლების მეორიდან გამოკლებისას.
-8x-6y=-10,-8x-8\left(-1\right)y=-8\times 17
იმისათვის, რომ -8x და x ტოლი იყოს, გაამრავლეთ ყველა წევრი პირველი განტოლების თითოეულ მხარეს 1-ზე, ხოლო ყველა წევრი მეორე განტოლების თითოეულ მხარეს -8-ზე.
-8x-6y=-10,-8x+8y=-136
გაამარტივეთ.
-8x+8x-6y-8y=-10+136
გამოაკელით -8x+8y=-136 -8x-6y=-10-იდან, მსგავსი წევრების გამოკლებით ტოლობის ნიშნის თითოეულ მხარეს.
-6y-8y=-10+136
მიუმატეთ -8x 8x-ს. პირობები -8x და 8x გაბათილდება, განტოლებაში დარჩება მხოლოდ ერთი ცვლადი, რომლის ამოხსნაც შესაძლებელია.
-14y=-10+136
მიუმატეთ -6y -8y-ს.
-14y=126
მიუმატეთ -10 136-ს.
y=-9
ორივე მხარე გაყავით -14-ზე.
x-\left(-9\right)=17
ჩაანაცვლეთ -9-ით y აქ: x-y=17. იმის გამო, რომ შედეგად მიღებული განტოლება მხოლოდ ერთ ცვლადს შეიცავს, შეგიძლიათ პირდაპირ ამოხსნათ x.
x=8
გამოაკელით 9 განტოლების ორივე მხარეს.
x=8,y=-9
სისტემა ახლა ამოხსნილია.
მაგალითები
კვადრატული განტოლება
{ x } ^ { 2 } - 4 x - 5 = 0
ტრიგონომეტრია
4 \sin \theta \cos \theta = 2 \sin \theta
ხაზოვანი განტოლება
y = 3x + 4
არითმეტიკა
699 * 533
მატრიცა
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
სინქრონული განტოლება
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
დიფერენცირება
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ინტეგრაცია
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ლიმიტები
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}